**Lectures on Stochastic Analysis**

by Thomas G. Kurtz

**Publisher**: University of Wisconsin 2007**Number of pages**: 119

**Description**:

The course will introduce stochastic integrals with respect to general semimartingales, stochastic differential equations based on these integrals, integration with respect to Poisson random measures, stochastic differential equations for general Markov processes, change of measure, and applications to finance, filtering and control. The intention has been to state the theorems correctly with all hypotheses, but no attempt has been made to include detailed proofs.

Download or read it online for free here:

**Download link**

(700KB, PDF)

## Similar books

**Introduction to Probability, Statistics, and Random Processes**

by

**Hossein Pishro-Nik**-

**Kappa Research, LLC**

This book introduces students to probability, statistics, and stochastic processes. It can be used by both students and practitioners in engineering, sciences, finance, and other fields. It provides a clear and intuitive approach to these topics.

(

**16016**views)

**Probability and Statistics Cookbook**

by

**Matthias Vallentin**

The cookbook contains a succinct representation of various topics in probability theory and statistics. It provides a comprehensive reference reduced to the mathematical essence, rather than aiming for elaborate explanations.

(

**17659**views)

**Non-Uniform Random Variate Generation**

by

**Luc Devroye**-

**Springer**

The book on small field on the crossroads of statistics, operations research and computer science. The applications of random number generators are wide and varied. The study of non-uniform random variates is precisely the subject area of the book.

(

**13447**views)

**Probability, Statistics and Stochastic Processes**

by

**Cosma Rohilla Shalizi**

Contents: Probability (Probability Calculus, Random Variables, Discrete and Continuous Distributions); Statistics (Handling of Data, Sampling, Estimation, Hypothesis Testing); Stochastic Processes (Markov Processes, Continuous-Time Processes).

(

**10151**views)