Logo

Synthetic Differential Geometry

Large book cover: Synthetic Differential Geometry

Synthetic Differential Geometry
by

Publisher: Cambridge University Press
ISBN/ASIN: 0521687381
ISBN-13: 9780521687386
Number of pages: 241

Description:
Synthetic Differential Geometry is a method of reasoning in differential geometry and calculus, where use of nilpotent elements allows the replacement of the limit processes of calculus by purely algebraic notions. In this second edition of Kock's classical text, many notes have been included commenting on new developments.

Home page url

Download or read it online for free here:
Download link
(1.1MB, PDF)

Similar books

Book cover: Functional Differential GeometryFunctional Differential Geometry
by - MIT
Differential geometry is deceptively simple. It is surprisingly easy to get the right answer with informal symbol manipulation. We use computer programs to communicate a precise understanding of the computations in differential geometry.
(11880 views)
Book cover: The Convenient Setting of Global AnalysisThe Convenient Setting of Global Analysis
by - American Mathematical Society
This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory.
(13896 views)
Book cover: Lectures on Exterior Differential SystemsLectures on Exterior Differential Systems
by - Tata Institute of Fundamental Research
Contents: Parametrization of sets of integral submanifolds (Regular linear maps, Germs of submanifolds of a manifold); Exterior differential systems (Differential systems with independent variables); Prolongation of Exterior Differential Systems.
(12326 views)
Book cover: Projective Differential Geometry Old and NewProjective Differential Geometry Old and New
by - Cambridge University Press
This book provides a route for graduate students and researchers to contemplate the frontiers of contemporary research in projective geometry. The authors include exercises and historical comments relating the basic ideas to a broader context.
(17923 views)