Convex Geometric Analysis
by Keith Ball, Vitali Milman
Publisher: Cambridge University Press 1998
ISBN/ASIN: 0521642590
ISBN-13: 9780521642590
Number of pages: 236
Description:
Convex bodies are at once simple and amazingly rich in structure. This collection involves researchers in classical convex geometry, geometric functional analysis, computational geometry, and related areas of harmonic analysis. It is representative of the best research in a very active field that brings together ideas from several major strands in mathematics.
Download or read it online for free here:
Download link
(multiple PDF files)
Similar books

by John O'Connor - University of St Andrews
Contents: Foundations; Linear groups; Isometries of Rn; Isometries of the line; Isometries of the plane; Isometries in 3 dimensions; Symmetry groups in the plane; Platonic solids; Finite symmetry groups of R3; Full finite symmetry groups in R3; etc.
(10737 views)

by Robert Sharpley - University of South Carolina
This course is a study of modern geometry as a logical system based upon postulates and undefined terms. Projective geometry, theorems of Desargues and Pappus, transformation theory, affine geometry, Euclidean, non-Euclidean geometries, topology.
(11749 views)

by Oleg A. Belyaev - Moscow State University
A continually updated book devoted to rigorous axiomatic exposition of the basic concepts of geometry. Self-contained comprehensive treatment with detailed proofs should make this book both accessible and useful to a wide audience of geometry lovers.
(20114 views)

by Maximilian Kreuzer - Technische Universitat Wien
From the table of contents: Topology (Homotopy, Manifolds, Surfaces, Homology, Intersection numbers and the mapping class group); Differentiable manifolds; Riemannian geometry; Vector bundles; Lie algebras and representations; Complex manifolds.
(15896 views)