Logo

Convex Geometric Analysis by Keith Ball, Vitali Milman

Large book cover: Convex Geometric Analysis

Convex Geometric Analysis
by

Publisher: Cambridge University Press
ISBN/ASIN: 0521642590
ISBN-13: 9780521642590
Number of pages: 236

Description:
Convex bodies are at once simple and amazingly rich in structure. This collection involves researchers in classical convex geometry, geometric functional analysis, computational geometry, and related areas of harmonic analysis. It is representative of the best research in a very active field that brings together ideas from several major strands in mathematics.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Euclidean Plane and Its RelativesEuclidean Plane and Its Relatives
by
This book is meant to be rigorous, elementary and minimalist. At the same time it includes about the maximum what students can absorb in one semester. It covers Euclidean geometry, Inversive geometry, Non-Euclidean geometry and Additional topics.
(7277 views)
Book cover: Topics in GeometryTopics in Geometry
by - University of St Andrews
Contents: Foundations; Linear groups; Isometries of Rn; Isometries of the line; Isometries of the plane; Isometries in 3 dimensions; Symmetry groups in the plane; Platonic solids; Finite symmetry groups of R3; Full finite symmetry groups in R3; etc.
(13360 views)
Book cover: Fundamentals of GeometryFundamentals of Geometry
by - Moscow State University
A continually updated book devoted to rigorous axiomatic exposition of the basic concepts of geometry. Self-contained comprehensive treatment with detailed proofs should make this book both accessible and useful to a wide audience of geometry lovers.
(22613 views)
Book cover: Geometric Theorems and Arithmetic FunctionsGeometric Theorems and Arithmetic Functions
by - American Research Press
Contents: on Smarandache's Podaire theorem, Diophantine equation, the least common multiple of the first positive integers, limits related to prime numbers, a generalized bisector theorem, values of arithmetical functions and factorials, and more.
(18965 views)