**Tight and Taut Submanifolds**

by Thomas E. Cecil, Shiing-shen Chern

**Publisher**: Cambridge University Press 1997**ISBN/ASIN**: 0521620473**ISBN-13**: 9780521620475**Number of pages**: 349

**Description**:

Tight and taut submanifolds form an important class of manifolds with special curvature properties, one that has been studied intensively by differential geometers since the 1950's. This book contains six in-depth articles by leading experts in the field and an extensive bibliography.

Download or read it online for free here:

**Download link**

(multiple PDF/PS files)

## Similar books

**Geometric Wave Equations**

by

**Stefan Waldmann**-

**arXiv**

We discuss the solution theory of geometric wave equations as they arise in Lorentzian geometry: for a normally hyperbolic differential operator the existence and uniqueness properties of Green functions and Green operators is discussed.

(

**10039**views)

**Algebraic geometry and projective differential geometry**

by

**Joseph M. Landsberg**-

**arXiv**

Homogeneous varieties, Topology and consequences Projective differential invariants, Varieties with degenerate Gauss images, Dual varieties, Linear systems of bounded and constant rank, Secant and tangential varieties, and more.

(

**15006**views)

**Noncompact Harmonic Manifolds**

by

**Gerhard Knieper, Norbert Peyerimhoff**-

**arXiv**

We provide a survey on recent results on noncompact simply connected harmonic manifolds, and we also prove many new results, both for general noncompact harmonic manifolds and for noncompact harmonic manifolds with purely exponential volume growth.

(

**6618**views)

**Projective Differential Geometry Of Curves And Surfaces**

by

**Ernest Preston Lane**-

**The University Of Chicago Press**

Projective Differential Geometry is largely a product of the first three decades of the twentieth century. The theory has been developed in five or more different languages, by three or four well-recognized methods, in various and sundry notations.

(

**4621**views)