**Groupoids and Smarandache Groupoids**

by W. B. Vasantha Kandasamy

**Publisher**: American Research Press 2002**ISBN/ASIN**: 1931233616**ISBN-13**: 9781931233613**Number of pages**: 115

**Description**:

This book aims to give a systematic development of the basic non-associative algebraic structures viz. Smarandache groupoids. Smarandache groupoids exhibits simultaneously the properties of a semigroup and a groupoid. Such a combined study of an associative and a non associative structure has not been so far carried out.

Download or read it online for free here:

**Download link**

(570KB, PDF)

## Similar books

**Notes on Categories and Groupoids**

by

**P. J. Higgins**-

**Van Nostrand Reinhold**

A self-contained account of the elementary theory of groupoids and some of its uses in group theory and topology. Category theory appears as a secondary topic whenever it is relevant to the main issue, and its treatment is by no means systematic.

(

**13378**views)

**Galois Groups and Fundamental Groups**

by

**Leila Schneps**-

**Cambridge University Press**

This book contains eight articles which focus on presenting recently developed new aspects of the theory of Galois groups and fundamental groups, avoiding classical aspects which have already been developed at length in the standard literature.

(

**11927**views)

**Lectures on Semi-group Theory and its Application to Cauchy's Problem in Partial Differential Equations**

by

**K. Yosida**-

**Tata Institute of Fundamental Research**

In these lectures, we shall be concerned with the differentiability and the representation of one-parameter semi-groups of bounded linear operators on a Banach space and their applications to the initial value problem for differential equations.

(

**10343**views)

**Group Theory**

by

**J. S. Milne**

Contents: Basic Definitions and Results; Free Groups and Presentations; Coxeter Groups; Automorphisms and Extensions; Groups Acting on Sets; The Sylow Theorems; Subnormal Series; Solvable and Nilpotent Groups; Representations of Finite Groups.

(

**11912**views)