Logo

Smarandache Semigroups by W. B. Vasantha Kandasamy

Large book cover: Smarandache Semigroups

Smarandache Semigroups
by

Publisher: American Research Press
ISBN/ASIN: 1931233594
ISBN-13: 9781931233590
Number of pages: 95

Description:
This book is a piece of work on Smarandache semigroups and assumes the reader to have a good background on group theory; we give some recollection about groups and some of its properties just for quick reference. Since most of the properties and theorems given regarding the Smarandache semigroups are new and cannot be found in existing literature the author has taken utmost efforts to see that the concepts are completely understood by illustrating with examples and a great number of problems.

Download or read it online for free here:
Download link
(500KB, PDF)

Similar books

Book cover: Galois Groups and Fundamental GroupsGalois Groups and Fundamental Groups
by - Cambridge University Press
This book contains eight articles which focus on presenting recently developed new aspects of the theory of Galois groups and fundamental groups, avoiding classical aspects which have already been developed at length in the standard literature.
(14709 views)
Book cover: Why are Braids Orderable?Why are Braids Orderable?
by
This book is an account of several quite different approaches to Artin's braid groups, involving self-distributive algebra, uniform finite trees, combinatorial group theory, mapping class groups, laminations, and hyperbolic geometry.
(13788 views)
Book cover: Introduction to Arithmetic GroupsIntroduction to Arithmetic Groups
by - arXiv
This revised version of a book in progress on arithmetic groups and locally symmetric spaces contains several additional chapters, including the proofs of three major theorems of G. A. Margulis (superrigidity, arithmeticity, and normal subgroups).
(11784 views)
Book cover: Theory and Applications of Finite GroupsTheory and Applications of Finite Groups
by - J. Wiley
The book presents in a unified manner the more fundamental aspects of finite groups and their applications, and at the same time preserves the advantage which arises when each branch of an extensive subject is written by a specialist in that branch.
(9033 views)