Noncommutative Geometry
by Alain Connes
Publisher: Academic Press 1994
ISBN/ASIN: 012185860X
ISBN-13: 9780121858605
Number of pages: 654
Description:
This English version of the path-breaking French book on this subject gives the definitive treatment of the revolutionary approach to measure theory, geometry, and mathematical physics developed by Alain Connes. Profusely illustrated and invitingly written, this book is ideal for anyone who wants to know what noncommutative geometry is, what it can do, or how it can be used in various areas of mathematics, quantization, and elementary particles and fields.
Download or read it online for free here:
Download link
(4.1MB, PDF)
Similar books
Noncommutative Geometry, Quantum Fields and Motives
by Alain Connes, Matilde Marcolli - American Mathematical Society
The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role.
(13360 views)
by Alain Connes, Matilde Marcolli - American Mathematical Society
The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role.
(13360 views)
Geometry and Group Theory
by Christopher Pope - Texas A&M University
Lecture notes on Geometry and Group Theory. In this course, we develop the basic notions of Manifolds and Geometry, with applications in physics, and also we develop the basic notions of the theory of Lie Groups, and their applications in physics.
(20544 views)
by Christopher Pope - Texas A&M University
Lecture notes on Geometry and Group Theory. In this course, we develop the basic notions of Manifolds and Geometry, with applications in physics, and also we develop the basic notions of the theory of Lie Groups, and their applications in physics.
(20544 views)
First Steps Towards a Symplectic Dynamics
by Barney Bramham, Helmut Hofer - arXiv
Both dynamical systems and symplectic geometry have rich theories and the time seems ripe to develop the common core with integrated ideas from both fields. We discuss problems which show how dynamical systems and symplectic ideas come together.
(11970 views)
by Barney Bramham, Helmut Hofer - arXiv
Both dynamical systems and symplectic geometry have rich theories and the time seems ripe to develop the common core with integrated ideas from both fields. We discuss problems which show how dynamical systems and symplectic ideas come together.
(11970 views)
Introduction to Braided Geometry and q-Minkowski Space
by Shahn Majid - arXiv
Systematic introduction to the geometry of linear braided spaces. These are versions of Rn in which the coordinates xi have braid-statistics described by an R-matrix. From this starting point we survey the author's braided-approach to q-deformation.
(9474 views)
by Shahn Majid - arXiv
Systematic introduction to the geometry of linear braided spaces. These are versions of Rn in which the coordinates xi have braid-statistics described by an R-matrix. From this starting point we survey the author's braided-approach to q-deformation.
(9474 views)