**Introduction to Stokes Structures**

by Claude Sabbah

**Publisher**: arXiv 2010**Number of pages**: 157

**Description**:

The purpose of these lectures is to introduce the notion of a Stokes-perverse sheaf as a receptacle for the Riemann-Hilbert correspondence for holonomic D-modules. They develop the original idea of P. Deligne in dimension one, and make it enter the frame of perverse sheaves. They also give a first step for a general definition in higher dimension, and make explicit particular cases of the Riemann-Hilbert correspondence, relying on recent results of T. Mochizuki.

Download or read it online for free here:

**Download link**

(1.2MB, PDF)

## Similar books

**Complex Analytic and Differential Geometry**

by

**Jean-Pierre Demailly**-

**Universite de Grenoble**

Basic concepts of complex geometry, coherent sheaves and complex analytic spaces, positive currents and potential theory, sheaf cohomology and spectral sequences, Hermitian vector bundles, Hodge theory, positive vector bundles, etc.

(

**13874**views)

**Convex Bodies and Algebraic Geometry**

by

**Tadao Oda**-

**Springer**

The theory of toric varieties describes a fascinating interplay between algebraic geometry and the geometry of convex figures in real affine spaces. This book is a unified up-to-date survey of the various results and interesting applications ...

(

**3963**views)

**Geometry Unbound**

by

**Kiran S. Kedlaya**

This is not a typical math textbook, it does not present full developments of key theorems, but it leaves strategic gaps in the text for the reader to fill in. The original text underlying this book was a set of notes for the Math Olympiad Program.

(

**12156**views)

**Lectures On Old And New Results On Algebraic Curves**

by

**P. Samuel**-

**Tata Institute Of Fundamental Research**

The aim of this text is to give a proof, due to Hans Grauert, of an analogue of Mordell's conjecture. Contents: Introduction; Algebro-Geometric Background; Algebraic Curves; The Theorem of Grauert (Mordell's conjecture for function fields).

(

**6747**views)