**Differential Geometry Course Notes**

by Richard Koch

**Publisher**: University of Oregon 2005**Number of pages**: 188

**Description**:

These are differential geometry course notes. From the table of contents: Preface; Curves; Surfaces; Extrinsic Theory; The Covariant Derivative; The Theorema Egregium; The Gauss-Bonnet Theorem; Riemann's Counting Argument.

Download or read it online for free here:

**Download link**

(15MB, PDF)

## Similar books

**Topics in Differential Geometry**

by

**Peter W. Michor**-

**American Mathematical Society**

Fundamentals of differential geometry: manifolds, flows, Lie groups and their actions, invariant theory, differential forms and de Rham cohomology, bundles and connections, Riemann manifolds, isometric actions, and symplectic and Poisson geometry.

(

**12197**views)

**Differential Geometry: Lecture Notes**

by

**Dmitri Zaitsev**-

**Trinity College Dublin**

From the table of contents: Chapter 1. Introduction to Smooth Manifolds; Chapter 2. Basic results from Differential Topology; Chapter 3. Tangent spaces and tensor calculus; Tensors and differential forms; Chapter 4. Riemannian geometry.

(

**11843**views)

**Differential Geometry: A First Course in Curves and Surfaces**

by

**Theodore Shifrin**-

**University of Georgia**

Contents: Curves (Examples, Arclength Parametrization, Frenet Frame); Surfaces: Local Theory (Parametrized Surfaces, Gauss Map, Covariant Differentiation, Parallel Translation, Geodesics); Surfaces: Further Topics (Holonomy, Hyperbolic Geometry,...).

(

**8577**views)

**Differential Geometry: A Geometric Introduction**

by

**David W. Henderson**-

**Project Euclid**

This is the only book that introduces differential geometry through a combination of an intuitive geometric foundation, a rigorous connection with the standard formalisms, computer exercises with Maple, and a problems-based approach.

(

**6323**views)