Why are Braids Orderable?
by Patrick Dehornoy, at al.
2010
Number of pages: 206
Description:
In the decade since the discovery that Artin's braid groups enjoy a left-invariant linear ordering, several quite different approaches have been applied to understand this phenomenon. This book is an account of those approaches, involving self-distributive algebra, uniform finite trees, combinatorial group theory, mapping class groups, laminations, and hyperbolic geometry.
Download or read it online for free here:
Download link
(1.7MB, PDF)
Similar books

by Ferdi Aryasetiawan - University of Lund
The text deals with basic Group Theory and its applications. Contents: Abstract Group Theory; Theory of Group Representations; Group Theory in Quantum Mechanics; Lie Groups; Atomic Physics; The Group SU2: Isospin; The Point Groups; The Group SU3.
(15108 views)

by N. Reshetikhin, V. Serganova, R. Borcherds - UC Berkeley
From the table of contents: Tangent Lie algebras to Lie groups; Simply Connected Lie Groups; Hopf Algebras; PBW Theorem and Deformations; Lie algebra cohomology; Engel's Theorem and Lie's Theorem; Cartan Criterion, Whitehead and Weyl Theorems; etc.
(11432 views)

by Predrag Cvitanovic - Princeton University Press
A book on the theory of Lie groups for researchers and graduate students in theoretical physics and mathematics. It answers what Lie groups preserve trilinear, quadrilinear, and higher order invariants. Written in a lively and personable style.
(14948 views)

by Arjeh Cohen, Rosane Ushirobira, Jan Draisma
Symmetry plays an important role in chemistry and physics. Group captures the symmetry in a very efficient manner. We focus on abstract group theory, deal with representations of groups, and deal with some applications in chemistry and physics.
(13530 views)