Why are Braids Orderable?
by Patrick Dehornoy, at al.
2010
Number of pages: 206
Description:
In the decade since the discovery that Artin's braid groups enjoy a left-invariant linear ordering, several quite different approaches have been applied to understand this phenomenon. This book is an account of those approaches, involving self-distributive algebra, uniform finite trees, combinatorial group theory, mapping class groups, laminations, and hyperbolic geometry.
Download or read it online for free here:
Download link
(1.7MB, PDF)
Similar books

by Dave Witte Morris - arXiv
This revised version of a book in progress on arithmetic groups and locally symmetric spaces contains several additional chapters, including the proofs of three major theorems of G. A. Margulis (superrigidity, arithmeticity, and normal subgroups).
(11786 views)

by Leila Schneps - Cambridge University Press
This book contains eight articles which focus on presenting recently developed new aspects of the theory of Galois groups and fundamental groups, avoiding classical aspects which have already been developed at length in the standard literature.
(14709 views)

by Michael Ruzhansky, Ville Turunen - Aalto TKK
Contents: Groups (Groups without topology, Group actions and representations); Topological groups (Compact groups, Haar measure, Fourier transforms on compact groups..); Linear Lie groups (Exponential map, Lie groups and Lie algebras); Hopf algebras.
(12263 views)

by William Burnside - Cambridge University Press
After introducing permutation notation and defining group, the author discusses the simpler properties of group that are independent of their modes of representation; composition-series of groups; isomorphism of a group with itself; etc.
(11807 views)