Logo

Introduction to Braided Geometry and q-Minkowski Space

Small book cover: Introduction to Braided Geometry and q-Minkowski Space

Introduction to Braided Geometry and q-Minkowski Space
by

Publisher: arXiv
Number of pages: 60

Description:
We present a systematic introduction to the geometry of linear braided spaces. These are versions of Rn in which the coordinates xi have braid-statistics described by an R-matrix. From this starting point we survey the author's braided-approach to q-deformation.

Home page url

Download or read it online for free here:
Download link
(680KB, PDF)

Similar books

Book cover: The Geometrization of PhysicsThe Geometrization of Physics
by - University of California at Irvine
The major goal of these notes is to develop an observation that not only can gauge fields of the Yang-Mills type be unified with the Einstein model of gravitation, but also that when this unification is made they are described by pure geometry.
(10532 views)
Book cover: Geometry, Topology and PhysicsGeometry, Topology and Physics
by - Technische Universitat Wien
From the table of contents: Topology (Homotopy, Manifolds, Surfaces, Homology, Intersection numbers and the mapping class group); Differentiable manifolds; Riemannian geometry; Vector bundles; Lie algebras and representations; Complex manifolds.
(14825 views)
Book cover: Lectures on Calabi-Yau and Special Lagrangian GeometryLectures on Calabi-Yau and Special Lagrangian Geometry
by - arXiv
An introduction to Calabi-Yau manifolds and special Lagrangian submanifolds from the differential geometric point of view, followed by recent results on singularities of special Lagrangian submanifolds, and their application to the SYZ Conjecture.
(10496 views)
Book cover: Edinburgh Lectures on Geometry, Analysis and PhysicsEdinburgh Lectures on Geometry, Analysis and Physics
by - arXiv
These notes are based on a set of six lectures that the author gave in Edinburgh and they cover some topics in the interface between Geometry and Physics. They involve some unsolved problems and they may stimulate readers to investigate them.
(7686 views)