Logo

Complex Multiplication by J. S. Milne

Small book cover: Complex Multiplication

Complex Multiplication
by


Number of pages: 113

Description:
These are preliminary notes for a modern account of the theory of complex multiplication. The reader is expected to have a good knowledge of basic algebraic number theory, and basic algebraic geometry, including abelian varieties.

Home page url

Download or read it online for free here:
Download link
(930KB, PDF)

Similar books

Book cover: Notes on the Theory of Algebraic NumbersNotes on the Theory of Algebraic Numbers
by - arXiv
This is a series of lecture notes on the elementary theory of algebraic numbers, using only knowledge of a first-semester graduate course in algebra (primarily groups and rings). No prerequisite knowledge of fields is required.
(7269 views)
Book cover: Lectures on Topics in Algebraic Number TheoryLectures on Topics in Algebraic Number Theory
by - Indian Institute of Technology, Bombay
These lecture notes give a rapid introduction to some basic aspects of Algebraic Number Theory with as few prerequisites as possible. Topics: Field Extensions; Ring Extensions; Dedekind Domains and Ramification Theory; Class Number and Lattices.
(10687 views)
Book cover: Lectures on Siegel Modular Forms and Representation by Quadratic FormsLectures on Siegel Modular Forms and Representation by Quadratic Forms
by - Tata Institute of Fundamental Research
This book is concerned with the problem of representation of positive definite quadratic forms by other such forms. From the table of contents: Preface; Fourier Coefficients of Siegel Modular Forms; Arithmetic of Quadratic Forms.
(7917 views)
Book cover: Lectures on Field Theory and Ramification TheoryLectures on Field Theory and Ramification Theory
by - Indian Institute of Technology, Bombay
These are notes of a series of lectures, aimed at covering the essentials of Field Theory and Ramification Theory as may be needed for local and global class field theory. Included are the two sections on cyclic extensions and abelian extensions.
(10563 views)