**Prerequisites in Algebraic Topology**

by Bjorn Ian Dundas

**Publisher**: NTNU 2005**Number of pages**: 55

**Description**:

This is not an introductory textbook in algebraic topology, these notes attempt to give a quick overview of the parts of algebraic topology, and in particular homotopy theory, which are needed in order to appreciate that side of motivic homotopy theory.

Download or read it online for free here:

**Download link**

(560KB, PDF)

## Similar books

**Topology of Stratified Spaces**

by

**Greg Friedman, et al.**-

**Cambridge University Press**

This book concerns the study of singular spaces using techniques of geometry and topology and interactions among them. The authors cover intersection homology, L2 cohomology and differential operators, the topology of algebraic varieties, etc.

(

**7999**views)

**Differential Forms and Cohomology: Course**

by

**Peter Saveliev**-

**Intelligent Perception**

Differential forms provide a modern view of calculus. They also give you a start with algebraic topology in the sense that one can extract topological information about a manifold from its space of differential forms. It is called cohomology.

(

**7661**views)

**The Homology of Iterated Loop Spaces**

by

**F. R. Cohen, T. J. Lada, P. J. May**-

**Springer**

A thorough treatment of homology operations and of their application to the calculation of the homologies of various spaces. The book studies an up to homotopy notion of an algebra over a monad and its role in the theory of iterated loop spaces.

(

**9288**views)

**Introduction to Topological Groups**

by

**Dikran Dikranjan**-

**UCM**

These notes provide a brief introduction to topological groups with a special emphasis on Pontryaginvan Kampen's duality theorem for locally compact abelian groups. We give a completely self-contained elementary proof of the theorem.

(

**9563**views)