Logo

Introduction to Signal Processing

Large book cover: Introduction to Signal Processing

Introduction to Signal Processing
by

Publisher: Prentice Hall
ISBN/ASIN: 0132091720
ISBN-13: 9780132091725
Number of pages: 398

Description:
Provides an applications-oriented introduction to digital signal processing. Orfandis covers all the basic DSP concepts and methods, such as sampling, discrete-time systems, DFT/FFT algorithms, and filter design. The book emphasizes the algorithmic, computational, and programming aspects of DSP, and includes a large number of worked examples, applications, and computer examples.

Home page url

Download or read it online for free here:
Download link
(6.8MB, PDF)

Similar books

Book cover: Statistical Spectral Analysis: A Non-Probabilistic TheoryStatistical Spectral Analysis: A Non-Probabilistic Theory
by - Prentice Hall
This book is intended to serve as both a graduate-level textbook and a technical reference. The focus is on fundamental concepts, analytical techniques, and basic empirical methods. The only prerequisite is an introductory course on Fourier analysis.
(6780 views)
Book cover: The Fundamentals of Signal AnalysisThe Fundamentals of Signal Analysis
- Agilent Technologies
This text is a primer for those who are unfamiliar with the advantages of analysis in the frequency and modal domains and Dynamic Signal Analyzers. The authors avoid the use of rigorous mathematics and instead depend on heuristic arguments.
(11036 views)
Book cover: Think DSP: Digital Signal Processing in PythonThink DSP: Digital Signal Processing in Python
by - Green Tea Press
'Think DSP: Digital Signal Processing in Python' is an introduction to signal processing and system analysis using a computational approach. The premise of this book is that if you know how to program, you can use that skill to learn other things.
(6109 views)
Book cover: R. R. Bahadur's Lectures on the Theory of EstimationR. R. Bahadur's Lectures on the Theory of Estimation
by - IMS
In this volume the author covered what should be standard topics in a course of parametric estimation: Bayes estimates, unbiased estimation, Fisher information, Cramer-Rao bounds, and the theory of maximum likelihood estimation.
(8771 views)