Logo

Ricci Flow and the Poincare Conjecture

Large book cover: Ricci Flow and the Poincare Conjecture

Ricci Flow and the Poincare Conjecture
by

Publisher: American Mathematical Society
ISBN/ASIN: 0821843281
ISBN-13: 9780821843284
Number of pages: 493

Description:
This book provides full details of a complete proof of the Poincare Conjecture following Grigory Perelman's three preprints. With the large amount of background material that is presented and the detailed versions of the central arguments, this book is suitable for all mathematicians from advanced graduate students to specialists in geometry and topology.

Download or read it online for free here:
Download link
(4.2MB, PDF)

Similar books

Book cover: An Introduction to Gaussian GeometryAn Introduction to Gaussian Geometry
by - Lund University
These notes introduce the beautiful theory of Gaussian geometry i.e. the theory of curves and surfaces in three dimensional Euclidean space. The text is written for students with a good understanding of linear algebra and real analysis.
(10305 views)
Book cover: Algebraic geometry and projective differential geometryAlgebraic geometry and projective differential geometry
by - arXiv
Homogeneous varieties, Topology and consequences Projective differential invariants, Varieties with degenerate Gauss images, Dual varieties, Linear systems of bounded and constant rank, Secant and tangential varieties, and more.
(14519 views)
Book cover: Exterior Differential Systems and Euler-Lagrange Partial Differential EquationsExterior Differential Systems and Euler-Lagrange Partial Differential Equations
by - University Of Chicago Press
The authors present the results of their development of a theory of the geometry of differential equations, focusing especially on Lagrangians and Poincare-Cartan forms. They also cover certain aspects of the theory of exterior differential systems.
(16185 views)
Book cover: Notes on the Atiyah-Singer Index TheoremNotes on the Atiyah-Singer Index Theorem
by - University of Notre Dame
This is arguably one of the deepest and most beautiful results in modern geometry, and it is surely a must know for any geometer / topologist. It has to do with elliptic partial differential operators on a compact manifold.
(9251 views)