**Ricci Flow and the Poincare Conjecture**

by John Morgan, Gang Tian

**Publisher**: American Mathematical Society 2007**ISBN/ASIN**: 0821843281**ISBN-13**: 9780821843284**Number of pages**: 493

**Description**:

This book provides full details of a complete proof of the Poincare Conjecture following Grigory Perelman's three preprints. With the large amount of background material that is presented and the detailed versions of the central arguments, this book is suitable for all mathematicians from advanced graduate students to specialists in geometry and topology.

Download or read it online for free here:

**Download link**

(4.2MB, PDF)

## Similar books

**An Introduction to Gaussian Geometry**

by

**Sigmundur Gudmundsson**-

**Lund University**

These notes introduce the beautiful theory of Gaussian geometry i.e. the theory of curves and surfaces in three dimensional Euclidean space. The text is written for students with a good understanding of linear algebra and real analysis.

(

**11781**views)

**Projective and Polar Spaces**

by

**Peter J. Cameron**-

**Queen Mary College**

The author is concerned with the geometry of incidence of points and lines, over an arbitrary field, and unencumbered by metrics or continuity (or even betweenness). The treatment of these themes blends the descriptive with the axiomatic.

(

**12846**views)

**Lectures on Fibre Bundles and Differential Geometry**

by

**J.L. Koszul**-

**Tata Institute of Fundamental Research**

From the table of contents: Differential Calculus; Differentiable Bundles; Connections on Principal Bundles; Holonomy Groups; Vector Bundles and Derivation Laws; Holomorphic Connections (Complex vector bundles, Almost complex manifolds, etc.).

(

**11098**views)

**Advances in Discrete Differential Geometry**

by

**Alexander I. Bobenko (ed.)**-

**Springer**

This is the book on a newly emerging field of discrete differential geometry. It surveys the fascinating connections between discrete models in differential geometry and complex analysis, integrable systems and applications in computer graphics.

(

**8729**views)