Logo

Ricci Flow and the Poincare Conjecture

Large book cover: Ricci Flow and the Poincare Conjecture

Ricci Flow and the Poincare Conjecture
by

Publisher: American Mathematical Society
ISBN/ASIN: 0821843281
ISBN-13: 9780821843284
Number of pages: 493

Description:
This book provides full details of a complete proof of the Poincare Conjecture following Grigory Perelman's three preprints. With the large amount of background material that is presented and the detailed versions of the central arguments, this book is suitable for all mathematicians from advanced graduate students to specialists in geometry and topology.

Download or read it online for free here:
Download link
(4.2MB, PDF)

Similar books

Book cover: Lectures on Calabi-Yau and Special Lagrangian GeometryLectures on Calabi-Yau and Special Lagrangian Geometry
by - arXiv
An introduction to Calabi-Yau manifolds and special Lagrangian submanifolds from the differential geometric point of view, followed by recent results on singularities of special Lagrangian submanifolds, and their application to the SYZ Conjecture.
(12561 views)
Book cover: Tight and Taut SubmanifoldsTight and Taut Submanifolds
by - Cambridge University Press
Tight and taut submanifolds form an important class of manifolds with special curvature properties, one that has been studied intensively by differential geometers since the 1950's. This book contains six articles by leading experts in the field.
(11116 views)
Book cover: Synthetic Geometry of ManifoldsSynthetic Geometry of Manifolds
by - University of Aarhus
This textbook can be used as a non-technical and geometric gateway to many aspects of differential geometry. The audience of the book is anybody with a reasonable mathematical maturity, who wants to learn some differential geometry.
(10349 views)
Book cover: Projective and Polar SpacesProjective and Polar Spaces
by - Queen Mary College
The author is concerned with the geometry of incidence of points and lines, over an arbitrary field, and unencumbered by metrics or continuity (or even betweenness). The treatment of these themes blends the descriptive with the axiomatic.
(11554 views)