Logo

Ricci Flow and the Poincare Conjecture

Large book cover: Ricci Flow and the Poincare Conjecture

Ricci Flow and the Poincare Conjecture
by

Publisher: American Mathematical Society
ISBN/ASIN: 0821843281
ISBN-13: 9780821843284
Number of pages: 493

Description:
This book provides full details of a complete proof of the Poincare Conjecture following Grigory Perelman's three preprints. With the large amount of background material that is presented and the detailed versions of the central arguments, this book is suitable for all mathematicians from advanced graduate students to specialists in geometry and topology.

Download or read it online for free here:
Download link
(4.2MB, PDF)

Similar books

Book cover: Natural Operations in Differential GeometryNatural Operations in Differential Geometry
by - Springer
A comprehensive textbook on all basic structures from the theory of jets. It begins with an introduction to differential geometry. After reduction each problem to a finite order setting, the remaining discussion is based on properties of jet spaces.
(13747 views)
Book cover: Notes on the Atiyah-Singer Index TheoremNotes on the Atiyah-Singer Index Theorem
by - University of Notre Dame
This is arguably one of the deepest and most beautiful results in modern geometry, and it is surely a must know for any geometer / topologist. It has to do with elliptic partial differential operators on a compact manifold.
(8162 views)
Book cover: Geometric Wave EquationsGeometric Wave Equations
by - arXiv
We discuss the solution theory of geometric wave equations as they arise in Lorentzian geometry: for a normally hyperbolic differential operator the existence and uniqueness properties of Green functions and Green operators is discussed.
(7928 views)
Book cover: Cusps of Gauss MappingsCusps of Gauss Mappings
by - Pitman Advanced Pub. Program
Gauss mappings of plane curves, Gauss mappings of surfaces, characterizations of Gaussian cusps, singularities of families of mappings, projections to lines, focal and parallel surfaces, projections to planes, singularities and extrinsic geometry.
(13027 views)