Logo

Introduction to the Field Theory of Classical and Quantum Phase Transitions

Small book cover: Introduction to the Field Theory of Classical and Quantum Phase Transitions

Introduction to the Field Theory of Classical and Quantum Phase Transitions
by

Publisher: arXiv
Number of pages: 178

Description:
These lecture notes provide a relatively self-contained introduction to field theoretic methods employed in the study of classical and quantum phase transitions. Classical phase transitions occur at a regime where quantum fluctuations do not play an important role, usually at high enough temperatures.

Home page url

Download or read it online for free here:
Download link
(1.1MB, PDF)

Similar books

Book cover: Statistical PhysicsStatistical Physics
by - University of Cambridge
This is an introductory course on Statistical Mechanics and Thermodynamics given to final year undergraduates. Topics: Fundamentals of Statistical Mechanics; Classical Gases; Quantum Gases; Classical Thermodynamics; Phase Transitions.
(10979 views)
Book cover: Statistical Physics: a Short Course for Electrical Engineering StudentsStatistical Physics: a Short Course for Electrical Engineering Students
by - arXiv
This is a set of lecture notes of a course on statistical physics and thermodynamics, oriented towards electrical engineering students. The main body of the lectures is devoted to statistical physics, whereas much less emphasis is on thermodynamics.
(7426 views)
Book cover: Statistical MechanifestoStatistical Mechanifesto
by - UCSD
This work is aimed at graduate and advanced undergraduate physics students. It contains a better entropy discussion, the Carnot conspiracy, Boltzmann distribution, entropy, free energy, meet Mr. Mole, chemical potential, and much more...
(6441 views)
Book cover: Homogeneous Boltzmann Equation in Quantum Relativistic Kinetic TheoryHomogeneous Boltzmann Equation in Quantum Relativistic Kinetic Theory
by - American Mathematical Society
We consider some mathematical questions about Boltzmann equations for quantum particles, relativistic or non relativistic. Relevant cases such as Bose, Bose-Fermi, and photon-electron gases are studied. We also consider some simplifications ...
(7161 views)