**Surveys in Noncommutative Geometry**

by Nigel Higson, John Roe

**Publisher**: American Mathematical Society 2006**ISBN/ASIN**: 0821838466**ISBN-13**: 9780821838464**Number of pages**: 208

**Description**:

The series of expository lectures intended to introduce key topics in noncommutative geometry to mathematicians unfamiliar with the subject. Topics: applications of noncommutative geometry to problems in ordinary geometry and topology, Riemann hypothesis and the possible application of the methods of noncommutative geometry in number theory, residue index theorem of Connes and Moscovici, etc.

Download or read it online for free here:

**Download link**

(1.8MB, PDF)

## Similar books

**Deformations of Algebras in Noncommutative Geometry**

by

**Travis Schedler**-

**arXiv**

In these notes, we give an example-motivated review of the deformation theory of associative algebras in terms of the Hochschild cochain complex as well as quantization of Poisson structures, and Kontsevich's formality theorem in the smooth setting.

(

**6637**views)

**Notes on Noncommutative Geometry**

by

**Igor Nikolaev**-

**arXiv**

The book covers basics of noncommutative geometry and its applications in topology, algebraic geometry and number theory. Intended for the graduate students and faculty with interests in noncommutative geometry; they can be read by non-experts.

(

**6576**views)

**An informal introduction to the ideas and concepts of noncommutative geometry**

by

**Thierry Masson**-

**arXiv**

This is an extended version of a three hours lecture given at the 6th Peyresq meeting 'Integrable systems and quantum field theory'. We make an overview of some of the mathematical results which motivated the development of noncommutative geometry.

(

**10003**views)

**Geometric Models for Noncommutative Algebra**

by

**Ana Cannas da Silva, Alan Weinstein**-

**University of California at Berkeley**

Noncommutative geometry is the study of noncommutative algebras as if they were algebras of functions on spaces, like the commutative algebras associated to affine algebraic varieties, differentiable manifolds, topological spaces, and measure spaces.

(

**9812**views)