Floer Homology, Gauge Theory, and Low Dimensional Topology
by David Ellwood, at al.
Publisher: American Mathematical Society 2006
ISBN/ASIN: 0821838458
ISBN-13: 9780821838457
Number of pages: 314
Description:
Mathematical gauge theory studies connections on principal bundles, or, more precisely, the solution spaces of certain partial differential equations for such connections. Historically, these equations have come from mathematical physics, and play an important role in the description of the electro-weak and strong nuclear forces.
Download or read it online for free here:
Download link
(3.1MB, PDF)
Similar books
Lecture Notes on Seiberg-Witten Invariants
by John Douglas Moore - Springer
A streamlined introduction to the theory of Seiberg-Witten invariants suitable for second-year graduate students. These invariants can be used to prove that there are many compact topological four-manifolds which have more than one smooth structure.
(10803 views)
by John Douglas Moore - Springer
A streamlined introduction to the theory of Seiberg-Witten invariants suitable for second-year graduate students. These invariants can be used to prove that there are many compact topological four-manifolds which have more than one smooth structure.
(10803 views)
Optimization Algorithms on Matrix Manifolds
by P.-A. Absil, R. Mahony, R. Sepulchre - Princeton University Press
Many science and engineering problems can be rephrased as optimization problems on matrix search spaces endowed with a manifold structure. This book shows how to exploit the structure of such problems to develop efficient numerical algorithms.
(18436 views)
by P.-A. Absil, R. Mahony, R. Sepulchre - Princeton University Press
Many science and engineering problems can be rephrased as optimization problems on matrix search spaces endowed with a manifold structure. This book shows how to exploit the structure of such problems to develop efficient numerical algorithms.
(18436 views)
Lectures on Sheaf Theory
by C.H. Dowker - Tata Institute of Fundamental Research
A sheaf is a tool for systematically tracking locally defined data attached to the open sets of a topological space. Contents: Sheaves; Sections; Cohomology groups of a space with coefficients in a presheaf; Introduction of the family Phi; etc.
(10574 views)
by C.H. Dowker - Tata Institute of Fundamental Research
A sheaf is a tool for systematically tracking locally defined data attached to the open sets of a topological space. Contents: Sheaves; Sections; Cohomology groups of a space with coefficients in a presheaf; Introduction of the family Phi; etc.
(10574 views)
Topology
by Curtis T. McMullen - Harvard University
Contents: Introduction; Background in set theory; Topology; Connected spaces; Compact spaces; Metric spaces; Normal spaces; Algebraic topology and homotopy theory; Categories and paths; Path lifting and covering spaces; Global topology; etc.
(8322 views)
by Curtis T. McMullen - Harvard University
Contents: Introduction; Background in set theory; Topology; Connected spaces; Compact spaces; Metric spaces; Normal spaces; Algebraic topology and homotopy theory; Categories and paths; Path lifting and covering spaces; Global topology; etc.
(8322 views)