Logo

Introduction to the Numerical Integration of PDEs

Small book cover: Introduction to the Numerical Integration of PDEs

Introduction to the Numerical Integration of PDEs
by

Publisher: University of Durham
Number of pages: 89

Description:
In these notes, we describe the design of a small C++ program which solves numerically the sine-Gordon equation. The program is build progressively to make it multipurpose and easy to modify to solve any system of partial differential equations.

Home page url

Download or read it online for free here:
Download link
(530KB, PS)

Similar books

Book cover: Numerical Methods Course NotesNumerical Methods Course Notes
by - University of California at San Diego
From the table of contents: A 'Crash' Course in octave/Matlab; Solving Linear Systems; Finding Roots; Interpolation; Spline Interpolation; Approximating Derivatives; Integrals and Quadrature; Least Squares; Ordinary Differential Equations.
(16406 views)
Book cover: Iterative Methods for Sparse Linear SystemsIterative Methods for Sparse Linear Systems
by - PWS
The book gives an in-depth, up-to-date view of practical algorithms for solving large-scale linear systems of equations. The methods described are iterative, i.e., they provide sequences of approximations that will converge to the solution.
(12516 views)
Book cover: Numerical Algorithms: Methods for Computer Vision, Machine Learning, and GraphicsNumerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics
by - CRC Press
Using examples from a broad base of computational tasks, including data processing and computational photography, the book introduces numerical modeling and algorithmic design from a practical standpoint and provides insight into theoretical tools.
(10953 views)
Book cover: Robust Geometric ComputationRobust Geometric Computation
by - New York University
Contents: Introduction to Geometric Nonrobustness; Modes of Numerical Computation; Geometric Computation; Arithmetic Approaches; Geometric Approaches; Exact Geometric Computation; Perturbation; Filters; Algebraic Background; Zero Bounds; etc.
(11912 views)