**Geometry, Topology and Physics**

by Maximilian Kreuzer

**Publisher**: Technische Universitat Wien 2010**Number of pages**: 69

**Description**:

From the table of contents: Topology (Homotopy, Manifolds, Surfaces, Homology, Intersection numbers and the mapping class group); Differentiable manifolds; Riemannian geometry; Vector bundles; Lie algebras and representations; Complex manifolds.

Download or read it online for free here:

**Download link 1**

**Download link 2**

(multiple PDF files)

## Similar books

**Geometric Theorems and Arithmetic Functions**

by

**Jozsef Sandor**-

**American Research Press**

Contents: on Smarandache's Podaire theorem, Diophantine equation, the least common multiple of the first positive integers, limits related to prime numbers, a generalized bisector theorem, values of arithmetical functions and factorials, and more.

(

**14321**views)

**Projective Geometry**

by

**Nigel Hitchin**

The techniques of projective geometry provide the technical underpinning for perspective drawing and in particular for the modern version of the Renaissance artist, who produces the computer graphics we see every day on the web.

(

**13542**views)

**Combinatorial and Computational Geometry**

by

**J. E. Goodman, J. Pach, E. Welzl**-

**Cambridge University Press**

This volume includes articles exploring geometric arrangements, polytopes, packing, covering, discrete convexity, geometric algorithms and their complexity, and the combinatorial complexity of geometric objects, particularly in low dimension.

(

**11104**views)

**The Fourth Dimension**

by

**Charles Howard Hinton**-

**S. Sonnenschein & Co.**

C. H. Hinton discusses the subject of the higher dimensionality of space, his aim being to avoid mathematical subtleties and technicalities, and thus enable his argument to be followed by readers who are not sufficiently conversant with mathematics.

(

**2493**views)