Four-manifolds, Geometries and Knots
by Jonathan Hillman
Publisher: arXiv 2009
Number of pages: 396
Description:
The goal of this book is to characterize algebraically the closed 4-manifolds that fibre nontrivially or admit geometries in the sense of Thurston, or which are obtained by surgery on 2-knots, and to provide a reference for the topology of such manifolds and knots. The first chapter is purely algebraic. The rest of the book may be divided into three parts: general results on homotopy and surgery, geometries and geometric decompositions, and 2-knots.
Download or read it online for free here:
Download link
(2.7MB, PDF)
Similar books

by A.A. Ranicki, et al, - Springer
The Hauptvermutung is the conjecture that any two triangulations of a polyhedron are combinatorially equivalent. This conjecture was formulated at the turn of the century, and until its resolution was a central problem of topology.
(8602 views)

by S. Hong, J. Kalliongis, D. McCullough, J. H. Rubinstein - arXiv
The elliptic 3-manifolds are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature. For any elliptic 3-manifold M, the inclusion from the isometry group of M to the diffeomorphism group of M is a homotopy equivalence.
(7667 views)

by Allen Hatcher
These pages are really just an early draft of the initial chapters of a real book on 3-manifolds. The text does contain a few things that aren't readily available elsewhere, like the Jaco-Shalen/Johannson torus decomposition theorem.
(9178 views)

by Jenny Wilson - University of Michigan
Contents: Five definitions of the braid group; The topology of Fn(C); The integral cohomology of the pure braid group; Generalizations of PBn and their cohomology; Transfer and twisted coefficients; Stability in the cohomology of braid groups; etc.
(3605 views)