**Notes on Basic 3-Manifold Topology**

by Allen Hatcher

2000**Number of pages**: 61

**Description**:

The little that exists of the 3-manifolds book (see below for a table of contents) is rather crude and unpolished, and doesn't cover a lot of material, but it does contain a few things that aren't readily available elsewhere, like the elementary form of the Jaco-Shalen/Johannson torus decomposition theorem.

Download or read it online for free here:

**Download link**

(0.4MB, PDF)

## Similar books

**Four-manifolds, Geometries and Knots**

by

**Jonathan Hillman**-

**arXiv**

The goal of the book is to characterize algebraically the closed 4-manifolds that fibre nontrivially or admit geometries in the sense of Thurston, or which are obtained by surgery on 2-knots, and to provide a reference for the topology of such knots.

(

**12054**views)

**CDBooK: Introduction to Vassiliev Knot invariants**

by

**S.Chmutov, S.Duzhin, J.Mostovoy**-

**Ohio State Universit**

An introduction to the theory of finite type (Vassiliev) knot invariants, with a stress on its combinatorial aspects. Written for readers with no background in this area, and we care more about the basic notions than about more advanced material.

(

**11570**views)

**The Geometry and Topology of Three-Manifolds**

by

**William P Thurston**-

**Mathematical Sciences Research Institute**

The text describes the connection between geometry and lowdimensional topology, it is useful to graduate students and mathematicians working in related fields, particularly 3-manifolds and Kleinian groups. Much of the material or technique is new.

(

**18443**views)

**Knot Diagrammatics**

by

**Louis H. Kauffman**-

**arXiv**

This paper is a survey of knot theory and invariants of knots and links from the point of view of categories of diagrams. The topics range from foundations of knot theory to virtual knot theory and topological quantum field theory.

(

**7208**views)