Introduction to Probability Theory and Statistics for Linguistics
by Marcus Kracht
Publisher: UCLA 2005
Number of pages: 137
Description:
Contents: Basic Probability Theory (Probability Spaces, Conditional Probability, Random Variables, Expected Word Length, Limit Theorems); Elements of Statistics (Estimators, Tests, Distributions, Correlation and Covariance, Linear Regression, Markov Chains); Probabilistic Linguistics (Probabilistic Regular Languages and Hidden Markov Models).
Download or read it online for free here:
Download link
(440KB, PDF)
Similar books
Markov Chains and Mixing Times
by D. A. Levin, Y. Peres, E. L. Wilmer - American Mathematical Society
An introduction to the modern approach to the theory of Markov chains. The main goal of this approach is to determine the rate of convergence of a Markov chain to the stationary distribution as a function of the size and geometry of the state space.
(15393 views)
by D. A. Levin, Y. Peres, E. L. Wilmer - American Mathematical Society
An introduction to the modern approach to the theory of Markov chains. The main goal of this approach is to determine the rate of convergence of a Markov chain to the stationary distribution as a function of the size and geometry of the state space.
(15393 views)
Principles of Data Analysis
by Cappella Archive - Prasenjit Saha
This is a short book about the principles of data analysis. The emphasis is on why things are done rather than on exactly how to do them. If you already know something about the subject, then working through this book will deepen your understanding.
(15745 views)
by Cappella Archive - Prasenjit Saha
This is a short book about the principles of data analysis. The emphasis is on why things are done rather than on exactly how to do them. If you already know something about the subject, then working through this book will deepen your understanding.
(15745 views)
An Introduction to Stochastic PDEs
by Martin Hairer - arXiv
This text is an attempt to give a reasonably self-contained presentation of the basic theory of stochastic partial differential equations, taking for granted basic measure theory, functional analysis and probability theory, but nothing else.
(14680 views)
by Martin Hairer - arXiv
This text is an attempt to give a reasonably self-contained presentation of the basic theory of stochastic partial differential equations, taking for granted basic measure theory, functional analysis and probability theory, but nothing else.
(14680 views)
Introduction Probaility and Statistics
by Muhammad El-Taha - University of Southern Maine
Topics: Data Analysis; Probability; Random Variables and Discrete Distributions; Continuous Probability Distributions; Sampling Distributions; Point and Interval Estimation; Large Sample Estimation; Large-Sample Tests of Hypothesis; etc.
(28390 views)
by Muhammad El-Taha - University of Southern Maine
Topics: Data Analysis; Probability; Random Variables and Discrete Distributions; Continuous Probability Distributions; Sampling Distributions; Point and Interval Estimation; Large Sample Estimation; Large-Sample Tests of Hypothesis; etc.
(28390 views)