Logo

Introduction to Probability Theory and Statistics for Linguistics

Small book cover: Introduction to Probability Theory and Statistics for Linguistics

Introduction to Probability Theory and Statistics for Linguistics
by

Publisher: UCLA
Number of pages: 137

Description:
Contents: Basic Probability Theory (Probability Spaces, Conditional Probability, Random Variables, Expected Word Length, Limit Theorems); Elements of Statistics (Estimators, Tests, Distributions, Correlation and Covariance, Linear Regression, Markov Chains); Probabilistic Linguistics (Probabilistic Regular Languages and Hidden Markov Models).

Download or read it online for free here:
Download link
(440KB, PDF)

Similar books

Book cover: Non-Uniform Random Variate GenerationNon-Uniform Random Variate Generation
by - Springer
The book on small field on the crossroads of statistics, operations research and computer science. The applications of random number generators are wide and varied. The study of non-uniform random variates is precisely the subject area of the book.
(15271 views)
Book cover: Convergence of Stochastic ProcessesConvergence of Stochastic Processes
by - Springer
Selected parts of empirical process theory, with applications to mathematical statistics. The book describes the combinatorial ideas needed to prove maximal inequalities for empirical processes indexed by classes of sets or classes of functions.
(16098 views)
Book cover: Inverse Problem Theory and Methods for Model Parameter EstimationInverse Problem Theory and Methods for Model Parameter Estimation
by - SIAM
The first part deals with discrete inverse problems with a finite number of parameters, while the second part deals with general inverse problems. The book for scientists and applied mathematicians facing the interpretation of experimental data.
(17503 views)
Book cover: Lectures on Noise Sensitivity and PercolationLectures on Noise Sensitivity and Percolation
by - arXiv
The goal of this set of lectures is to combine two seemingly unrelated topics: (1) The study of Boolean functions, a field particularly active in computer science; (2) Some models in statistical physics, mostly percolation.
(12287 views)