Introduction to Probability Theory and Statistics for Linguistics
by Marcus Kracht
Publisher: UCLA 2005
Number of pages: 137
Description:
Contents: Basic Probability Theory (Probability Spaces, Conditional Probability, Random Variables, Expected Word Length, Limit Theorems); Elements of Statistics (Estimators, Tests, Distributions, Correlation and Covariance, Linear Regression, Markov Chains); Probabilistic Linguistics (Probabilistic Regular Languages and Hidden Markov Models).
Download or read it online for free here:
Download link
(440KB, PDF)
Similar books

by David Aldous, James Allen Fill - University of California, Berkeley
From the table of contents: General Markov Chains; Reversible Markov Chains; Hitting and Convergence Time, and Flow Rate, Parameters for Reversible Markov Chains; Special Graphs and Trees; Cover Times; Symmetric Graphs and Chains; etc.
(12543 views)

by J. C. Lemm - arXiv.org
A particular Bayesian field theory is defined by combining a likelihood model, providing a probabilistic description of the measurement process, and a prior model, providing the information necessary to generalize from training to non-training data.
(5059 views)

by Terence Tao
This is a textbook for a graduate course on random matrix theory, inspired by recent developments in the subject. This text focuses on foundational topics in random matrix theory upon which the most recent work has been based.
(12183 views)

by Wolfgang Härdle - Cambridge University Press
Nonparametric regression analysis has become central to economic theory. Hardle, by writing the first comprehensive and accessible book on the subject, contributed enormously to making nonparametric regression equally central to econometric practice.
(24417 views)