Introduction to Partial Differential Equations
by John Douglas Moore
Publisher: UCSB 2003
Number of pages: 169
Description:
Our goal here is to develop the most basic ideas from the theory of partial differential equations, and apply them to the simplest models arising from physics. In particular, we will present some of the elegant mathematics that can be used to describe the vibrating circular membrane.
Download or read it online for free here:
Download link
(2.7MB, PDF)
Similar books

by William W. Symes - Rice University
This course aims to make students aware of the physical origins of the main partial differential equations of classical mathematical physics, including the equations of fluid and solid mechanics, thermodynamics, and classical electrodynamics.
(16692 views)

by Valeriy Serov - University of Oulu
Contents: Preliminaries; Local Existence Theory; Fourier Series; One-dimensional Heat Equation; One-dimensional Wave Equation; Laplace Equation; Laplace Operator; Dirichlet and Neumann Problems; Layer Potentials; The Heat Operator; The Wave Operator.
(14595 views)

by Sigurdur Freyr Hafstein
In this monograph we develop an algorithm for constructing Lyapunov functions for arbitrary switched dynamical systems, possessing a uniformly asymptotically stable equilibrium. We give examples of Lyapunov functions constructed by our method.
(9704 views)

by Richard S. Laugesen - arXiv
This text aims at highlights of spectral theory for self-adjoint partial differential operators, with an emphasis on problems with discrete spectrum. The course aims to develop your mental map of spectral theory in partial differential equations.
(10688 views)