**An Introductory Single Variable Real Analysis**

by Marcel B. Finan

**Publisher**: Arkansas Tech University 2009**Number of pages**: 179

**Description**:

The present manuscript is designed for an introductory course in real analysis suitable to upper sophomore or junior level students who already had the calculus sequel as well as a course in discrete mathematics or an equivalent course in mathematical proof. The content is considered a moderate level of difficulty.

Download or read it online for free here:

**Download link**

(620KB, PDF)

## Similar books

**Lectures on Lipschitz Analysis**

by

**Juha Heinonen**

In these lectures, we concentrate on the theory of Lipschitz functions in Euclidean spaces. From the table of contents: Introduction; Extension; Differentiability; Sobolev spaces; Whitney flat forms; Locally standard Lipschitz structures.

(

**11454**views)

**Notes on Measure and Integration**

by

**John Franks**-

**arXiv**

My intent is to introduce the Lebesgue integral in a quick, and hopefully painless, way and then go on to investigate the standard convergence theorems and a brief introduction to the Hilbert space of L2 functions on the interval.

(

**7964**views)

**Introduction to Lebesgue Integration**

by

**W W L Chen**-

**Macquarie University**

An introduction to some of the basic ideas in Lebesgue integration with the minimal use of measure theory. Contents: the real numbers and countability, the Riemann integral, point sets, the Lebesgue integral, monotone convergence theorem, etc.

(

**16881**views)

**Introduction to Real Analysis**

by

**Lee Larson**-

**University of Louisville**

From the table of contents: Basic Ideas (Sets, Functions and Relations, Cardinality); The Real Numbers; Sequences; Series; The Topology of R; Limits of Functions; Differentiation; Integration; Sequences of Functions; Fourier Series.

(

**8708**views)