**Lectures on The Riemann Zeta-Function**

by K. Chandrasekharan

**Publisher**: Tata Institute of Fundamental Research 1953**ISBN/ASIN**: B0007J92N0**Number of pages**: 154

**Description**:

The aim of these lectures is to provide an intorduction to the theory of the Riemann Zeta-function for students who might later want to do research on the subject. The Prime Number Theorem, Hardy's theorem, and Hamburger's theorem are the principal results proved here. The exposition is self-contained, and required a preliminary knowledge of only the elements of function theory.

Download or read it online for free here:

**Download link**

(650KB, PDF)

## Similar books

**Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators**

by

**Nicolas Lerner**-

**BirkhĂ¤user**

This is a book on pseudodifferential operators, with emphasis on non-selfadjoint operators, a priori estimates and localization in the phase space. The first part of the book is accessible to graduate students with a decent background in Analysis.

(

**9990**views)

**Functions of a Complex Variable**

by

**Thomas S. Fiske**-

**John Wiley & sons**

This book is a brief introductory account of some of the more fundamental portions of the theory of functions of a complex variable. It will give the uninitiated some idea of the nature of one of the most important branches of modem mathematics.

(

**8229**views)

**Hyperbolic Functions**

by

**James McMahon**-

**John Wiley & Sons**

College students who wish to know something of the hyperbolic trigonometry, will find it presented in a simple and comprehensive way in the first half of the work. Readers are then introduced to the more general trigonometry of the complex plane.

(

**13523**views)

**Introduction to Complex Analysis**

by

**W W L Chen**-

**Macquarie University**

Introduction to some of the basic ideas in complex analysis: complex numbers; foundations of complex analysis; complex differentiation; complex integrals; Cauchy's integral theorem; Cauchy's integral formula; Taylor series; Laurent series; etc.

(

**16649**views)