**Robust Geometric Computation**

by Kurt Mehlhorn, Chee Yap

**Publisher**: New York University 2004

**Description**:

Contents: Introduction to Geometric Nonrobustness; Modes of Numerical Computation; Geometric Computation; Arithmetic Approaches; Geometric Approaches; Exact Geometric Computation; Perturbation; Filters; Algebraic Background; Zero Bounds; Numerical Algebraic Computing; Newton Methods; Curves; Surfaces.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**Notes on Harmonic Analysis**

by

**George Benthien**

Tutorial discussing some of the numerical aspects of practical harmonic analysis. Topics include Historical Background, Fourier Series and Integral Approximations, Convergence Improvement, Differentiation of Fourier Series and Sigma Factors, etc.

(

**8252**views)

**Lectures on The Finite Element Method**

by

**Ph. Ciarlet**-

**Tata Institute of Fundamental Research**

Our basic aim has been to present some of the mathematical aspects of the finite element method, as well as some applications of the finite element method for solving problems in Elasticity. This is why some important topics are not covered here.

(

**7794**views)

**Geometric Transformation of Finite Element Methods: Theory and Applications**

by

**M. Holst, M. Licht**-

**arXiv.org**

We present a new technique to apply finite element methods to partial differential equations over curved domains. Bramble-Hilbert lemma is key in harnessing regularity in the physical problem to prove finite element convergence rates for the problem.

(

**2871**views)

**Numerical Analysis I**

by

**Mark Embree**-

**Rice University**

This course takes a tour through many algorithms of numerical analysis. We aim to assess alternative methods based on efficiency, to discern well-posed problems from ill-posed ones, and to see these methods in action through computer implementation.

(

**11010**views)