Logo

A Basic Introduction to Large Deviations: Theory, Applications, Simulations

Small book cover: A Basic Introduction to Large Deviations: Theory, Applications, Simulations

A Basic Introduction to Large Deviations: Theory, Applications, Simulations
by

Publisher: arXiv
Number of pages: 56

Description:
The theory of large deviations deals with the probabilities of rare events (or fluctuations) that are exponentially small as a function of some parameter, e.g., the number of random components of a system, the time over which a stochastic system is observed, the amplitude of the noise perturbing a dynamical system or the temperature of a chemical reaction.

Home page url

Download or read it online for free here:
Download link
(1.4MB, PDF)

Similar books

Book cover: An Introduction to Monte Carlo Simulations in Statistical PhysicsAn Introduction to Monte Carlo Simulations in Statistical Physics
by - arXiv
A brief introduction to the technique of Monte Carlo simulations in statistical physics. The topics covered include statistical ensembles random and pseudo random numbers, random sampling techniques, importance sampling, Markov chain, etc.
(11623 views)
Book cover: Modern Statistical MechanicsModern Statistical Mechanics
by - The University of Virginia
This book is an attempt to cover the gap between what is taught in a conventional statistical mechanics class and between what is necessary to understand current research. The aim is to introduce the basics of many-body physics to a wide audience.
(8039 views)
Book cover: Statistical Field TheoryStatistical Field Theory
by - University of Cambridge
These notes are concerned with the physics of phase transitions: the phenomenon that in particular environments, many systems exhibit singularities in the thermodynamic variables which best describe the macroscopic state of the system.
(9339 views)
Book cover: Pure State Quantum Statistical MechanicsPure State Quantum Statistical Mechanics
by - arXiv
A new approach towards the foundations of Statistical Mechanics is explored. The approach is genuine quantum in the sense that statistical behavior is a consequence of objective quantum uncertainties due to entanglement and uncertainty relations.
(9459 views)