**Lectures on Riemann Matrices**

by C.L. Siegel

**Publisher**: Tata Institute of Fundamental Research 1963**ISBN/ASIN**: B000OK34HM**Number of pages**: 101

**Description**:

In this course of lectures, we shall be concerned with a systematic study of Riemann matrices which arise in a natural way from the theory of abelian functions. Contents: Abelian Functions; Commutator-algebra of a R-matrix; Division algebras over Q with a positive involution; Cyclic algebras; Division algebras over Q; Positive involutions of the second kind in division algebras; Existence of R-matrices with given commutator-algebra; Modular groups associated with Riemann matrices.

Download or read it online for free here:

**Download link**

(600KB, PDF)

## Similar books

**Complex Analysis on Riemann Surfaces**

by

**Curtis McMullen**-

**Harvard University**

Contents: Maps between Riemann surfaces; Sheaves and analytic continuation; Algebraic functions; Holomorphic and harmonic forms; Cohomology of sheaves; Cohomology on a Riemann surface; Riemann-Roch; Serre duality; Maps to projective space; etc.

(

**14385**views)

**Theory of Functions of a Complex Variable**

by

**Heinrich Burkhardt**-

**D. C. Heath**

Contents: Complex numbers and their geometrical representation; Rational functions of a complex variable; Theory of real variables and their functions; Single-valued analytic functions of a complex variable; General theory of functions; etc.

(

**4888**views)

**Lectures on the Theory of Algebraic Functions of One Variable**

by

**M. Deuring**-

**Tata Institute of Fundamental Research**

We shall be dealing in these lectures with the algebraic aspects of the theory of algebraic functions of one variable. Since an algebraic function w(z) is defined by f(z,w)=0, the study of such functions should be possible by algebraic methods.

(

**9404**views)

**Complex Analysis for Mathematics and Engineering**

by

**John H. Mathews, Russell W. Howell**-

**Jones & Bartlett Learning**

This book presents a comprehensive, student-friendly introduction to Complex Analysis concepts. Its clear, concise writing style and numerous applications make the foundations of the subject matter easily accessible to students.

(

**25533**views)