Logo

Real Analysis for Graduate Students: Measure and Integration Theory

Large book cover: Real Analysis for Graduate Students: Measure and Integration Theory

Real Analysis for Graduate Students: Measure and Integration Theory
by

Publisher: CreateSpace
ISBN/ASIN: 146639157X
ISBN-13: 9781466391574
Number of pages: 206

Description:
Nearly every Ph.D. student in mathematics needs to take a preliminary or qualifying examination in real analysis. This book provides the necessary tools to pass such an examination. Every effort was made to present the material in as clear a fashion as possible.

Home page url

Download or read it online for free here:
Download link
(770KB, PDF)

Similar books

Book cover: Undergraduate Analysis ToolsUndergraduate Analysis Tools
by - University of California, San Diego
Contents: Natural, integer, and rational Numbers; Fields; Real Numbers; Complex Numbers; Set Operations, Functions, and Counting; Metric Spaces; Series and Sums in Banach Spaces; Topological Considerations; Differential Calculus in One Real Variable.
(7940 views)
Book cover: Set Theoretic Real AnalysisSet Theoretic Real Analysis
by - Heldermann Verlag
This text surveys the recent results that concern real functions whose statements involve the use of set theory. The choice of the topics follows the author's personal interest in the subject. Most of the results are left without the proofs.
(16135 views)
Book cover: Real Variables: With Basic Metric Space TopologyReal Variables: With Basic Metric Space Topology
by - Institute of Electrical & Electronics Engineering
A text for a first course in real variables for students of engineering, physics, and economics, who need to know real analysis in order to cope with the professional literature. The subject matter is fundamental for more advanced mathematical work.
(63325 views)
Book cover: An Introduction to Real AnalysisAn Introduction to Real Analysis
by - University of California Davis
These are some notes on introductory real analysis. They cover the properties of the real numbers, sequences and series of real numbers, limits of functions, continuity, differentiability, sequences and series of functions, and Riemann integration.
(8574 views)