Existence, multiplicity, perturbation, and concentration results for a class of quasi-linear elliptic problems
by Marco Squassina
Publisher: Electronic Journal of Differential Equations 2006
Number of pages: 213
Description:
The aim of this monograph is to present a comprehensive survey of results about existence, multiplicity, perturbation from symmetry and concentration phenomena for a class of quasi-linear elliptic equations coming from functionals of the calculus of variations which turn out to be merely continuous. Some tools of non-smooth critical point theory will be employed.
Download or read it online for free here:
Download link
(1.7MB, PDF)
Similar books

by Richard S. Laugesen - arXiv
This text aims at highlights of spectral theory for self-adjoint partial differential operators, with an emphasis on problems with discrete spectrum. The course aims to develop your mental map of spectral theory in partial differential equations.
(8393 views)

by Zhongwei Shen - arXiv.org
In recent years considerable advances have been made in quantitative homogenization of PDEs in the periodic and non-periodic settings. This monograph surveys the theory of quantitative homogenization for second-order linear elliptic systems ...
(3704 views)

by Richard B. Melrose, Gunther Uhlmann - MIT
The origin of scattering theory is the study of quantum mechanical systems. The scattering theory for perturbations of the flat Laplacian is discussed with the approach via the solution of the Cauchy problem for the corresponding perturbed equation.
(9378 views)

by Willard Miller - Addison-Wesley
This volume is concerned with the relationship between symmetries of a linear second-order partial differential equation of mathematical physics and the coordinate systems in which the equation admits solutions via separation of variables.
(8765 views)