Lower K- and L-theory
by Andrew Ranicki
Publisher: Cambridge University Press 2001
ISBN/ASIN: 0521438012
ISBN-13: 9780521438018
Number of pages: 177
Description:
This is the first treatment in book form of the applications of the lower K- and L-groups (which are the components of the Grothendieck groups of modules and quadratic forms over polynomial extension rings) to the topology of manifolds such as Euclidean spaces, via Whitehead torsion and the Wall finiteness and surgery obstructions. The author uses only elementary constructions and gives a full algebraic account of the groups involved.
Download or read it online for free here:
Download link
(1.1MB, PDF)
Similar books

by John R. Stallings - Tata Institute of Fundamental Research
These notes contain: The elementary theory of finite polyhedra in real vector spaces; A theory of 'general position' (approximation of maps), based on 'non-degeneracy'. A theory of 'regular neighbourhoods' in arbitrary polyhedra; etc.
(8410 views)

by S.Chmutov, S.Duzhin, J.Mostovoy - Ohio State Universit
An introduction to the theory of finite type (Vassiliev) knot invariants, with a stress on its combinatorial aspects. Written for readers with no background in this area, and we care more about the basic notions than about more advanced material.
(10578 views)

by A. A. Ranicki - Cambridge University Press
Assuming no previous acquaintance with surgery theory and justifying all the algebraic concepts used by their relevance to topology, Dr Ranicki explains the applications of quadratic forms to the classification of topological manifolds.
(8814 views)

by M. Boittin, E. Callahan, D. Goldberg, J. Remes - Ohio State University
This is an innovative project by a group of Yale undergraduates: A Multi-Disciplinary Exploration of Non-Orientable Surfaces. The course is designed to be included as a short segment in a late middle school or early high school math course.
(14133 views)