**Exotic Homology Manifolds**

by Frank Quinn, Andrew Ranicki

2006**Number of pages**: 158

**Description**:

Homology manifolds were developed in the first half of the 20th century to give a precise setting for Poincare's ideas on duality. Exotic homology manifolds are investigated using algebraic and geometric methods. This volume is the proceedings of the Mini-Workshop Exotic Homology manifolds held at Oberwolfach 2003.

Download or read it online for free here:

**Download link**

(1.1MB, PDF)

## Similar books

**An Introduction to Algebraic Surgery**

by

**Andrew Ranicki**-

**arXiv**

Browder-Novikov-Sullivan-Wall surgery theory investigates the homotopy types of manifolds, using a combination of algebra and topology. It is the aim of these notes to provide an introduction to the more algebraic aspects of the theory.

(

**9455**views)

**Knot Diagrammatics**

by

**Louis H. Kauffman**-

**arXiv**

This paper is a survey of knot theory and invariants of knots and links from the point of view of categories of diagrams. The topics range from foundations of knot theory to virtual knot theory and topological quantum field theory.

(

**5623**views)

**E 'Infinite' Ring Spaces and E 'Infinite' Ring Spectra**

by

**J. P. May**-

**Springer**

The theme of this book is infinite loop space theory and its multiplicative elaboration. The main goal is a complete analysis of the relationship between the classifying spaces of geometric topology and the infinite loop spaces of algebraic K-theory.

(

**10521**views)

**CDBooK: Introduction to Vassiliev Knot invariants**

by

**S.Chmutov, S.Duzhin, J.Mostovoy**-

**Ohio State Universit**

An introduction to the theory of finite type (Vassiliev) knot invariants, with a stress on its combinatorial aspects. Written for readers with no background in this area, and we care more about the basic notions than about more advanced material.

(

**9922**views)