Logo

Mathematical Theory of Scattering Resonances

Small book cover: Mathematical Theory of Scattering Resonances

Mathematical Theory of Scattering Resonances
by

Publisher: MIT
Number of pages: 640

Description:
Contents: Scattering resonances in dimension one; Resonances for potentials in odd dimensions; Black box scattering in Rn; The method of complex scaling; Perturbation theory for resonances; Resolvent estimates in semiclassical scattering; Chaotic scattering; etc.

Home page url

Download or read it online for free here:
Download link
(12MB, PDF)

Similar books

Book cover: Lectures on Elliptic Partial Differential EquationsLectures on Elliptic Partial Differential Equations
by - Tata Institute of Fundamental Research
In these lectures we study the boundary value problems associated with elliptic equation by using essentially L2 estimates (or abstract analogues of such estimates). We consider only linear problem, and we do not study the Schauder estimates.
(8152 views)
Book cover: Lectures on Periodic Homogenization of Elliptic SystemsLectures on Periodic Homogenization of Elliptic Systems
by - arXiv.org
In recent years considerable advances have been made in quantitative homogenization of PDEs in the periodic and non-periodic settings. This monograph surveys the theory of quantitative homogenization for second-order linear elliptic systems ...
(3192 views)
Book cover: An Introduction to Microlocal AnalysisAn Introduction to Microlocal Analysis
by - MIT
The origin of scattering theory is the study of quantum mechanical systems. The scattering theory for perturbations of the flat Laplacian is discussed with the approach via the solution of the Cauchy problem for the corresponding perturbed equation.
(8758 views)
Book cover: Introduction to the Numerical Integration of PDEsIntroduction to the Numerical Integration of PDEs
by - University of Durham
In these notes, we describe the design of a small C++ program which solves numerically the sine-Gordon equation. The program is build progressively to make it multipurpose and easy to modify to solve any system of partial differential equations.
(10611 views)