Homogeneous Boltzmann Equation in Quantum Relativistic Kinetic Theory

Small book cover: Homogeneous Boltzmann Equation in Quantum Relativistic Kinetic Theory

Homogeneous Boltzmann Equation in Quantum Relativistic Kinetic Theory

Publisher: American Mathematical Society
Number of pages: 85

We consider some mathematical questions about Boltzmann equations for quantum particles, relativistic or non relativistic. Relevant particular cases such as Bose, Bose-Fermi, and photon-electron gases are studied. We also consider some simplifications such as the isotropy of the distribution functions and the asymptotic limits.

Download or read it online for free here:
Download link
(560KB, PDF)

Similar books

Book cover: Non-Equilibrium Statistical MechanicsNon-Equilibrium Statistical Mechanics
by - Imperial College London
This is an attempt to deliver, within a couple of hours, a few key-concepts of non-equilibrium statistical mechanics. The goal is to develop some ideas of contemporary research. Many of the ideas are illustrated or even introduced by examples.
Book cover: Pure State Quantum Statistical MechanicsPure State Quantum Statistical Mechanics
by - arXiv
A new approach towards the foundations of Statistical Mechanics is explored. The approach is genuine quantum in the sense that statistical behavior is a consequence of objective quantum uncertainties due to entanglement and uncertainty relations.
Book cover: Fluctuation-Dissipation: Response Theory in Statistical PhysicsFluctuation-Dissipation: Response Theory in Statistical Physics
by - arXiv
General aspects of the Fluctuation-Dissipation Relation (FDR), and Response Theory are considered. We illustrate the relation between the relaxation of spontaneous fluctuations, and the response to an external perturbation.
Book cover: Lecture Notes in Statistical Mechanics and MesoscopicsLecture Notes in Statistical Mechanics and Mesoscopics
by - arXiv
These are notes for quantum and statistical mechanics courses. Topics covered: master equations; non-equilibrium processes; fluctuation theorems; linear response theory; adiabatic transport; the Kubo formalism; scattering approach to mesoscopics.