Logo

Mathemathical Methods of Theoretical Physics

Small book cover: Mathemathical Methods of Theoretical Physics

Mathemathical Methods of Theoretical Physics
by

Publisher: Edition Funzl
Number of pages: 222

Description:
This book presents the course material for mathemathical methods of theoretical physics intended for an undergraduate audience. The author most humbly presents his own version of what is important for standard courses of contemporary physics.

Home page url

Download or read it online for free here:
Download link
(1.4MB, PDF)

Similar books

Book cover: Introduction to Mathematical PhysicsIntroduction to Mathematical Physics
by - Wikibooks
The goal of this book is to propose an ensemble view of modern physics. The coherence between various fields of physics is insured by following two axes: a first is the universal mathematical language; the second is the study of the N body problem.
(8311 views)
Book cover: Lectures on Diffusion Problems and Partial Differential EquationsLectures on Diffusion Problems and Partial Differential Equations
by - Tata Institute of Fundamental Research
Starting from Brownian Motion, the lectures quickly got into the areas of Stochastic Differential Equations and Diffusion Theory. The section on Martingales is based on additional lectures given by K. Ramamurthy of the Indian Institute of Science.
(8066 views)
Book cover: Differential Equations of Mathematical PhysicsDifferential Equations of Mathematical Physics
by - arXiv
These lecture notes give an overview of how to view and solve differential equations that are common in physics. They cover Hamilton's equations, variations of the Schroedinger equation, the heat equation, the wave equation and Maxwell's equations.
(7603 views)
Book cover: Random Matrix Models and Their ApplicationsRandom Matrix Models and Their Applications
by - Cambridge University Press
The book covers broad areas such as topologic and combinatorial aspects of random matrix theory; scaling limits, universalities and phase transitions in matrix models; universalities for random polynomials; and applications to integrable systems.
(14869 views)