The Algebraic Theory of Modular Systems
by Francis Sowerby Macaulay
Publisher: Cambridge University Press 1916
ISBN/ASIN: 0521455626
Number of pages: 140
Description:
Many of the ideas introduced by F.S. Macaulay in this classic book have developed into central concepts in what has become the branch of mathematics known as Commutative Algebra. Today his name is remembered through the term 'Cohen-Macaulay ring'.
Download or read it online for free here:
Download link
(multiple formats)
Similar books
The CRing Project: a collaborative open source textbook on commutative algebra
by Shishir Agrawal, et al. - CRing Project
The CRing project is an open source textbook on commutative algebra, aiming to comprehensively cover the foundations needed for algebraic geometry at the EGA or SGA level. Suitable for a beginning undergraduate with a background in abstract algebra.
(10447 views)
by Shishir Agrawal, et al. - CRing Project
The CRing project is an open source textbook on commutative algebra, aiming to comprehensively cover the foundations needed for algebraic geometry at the EGA or SGA level. Suitable for a beginning undergraduate with a background in abstract algebra.
(10447 views)
Lectures on Commutative Algebra
by Sudhir R. Ghorpade - Indian Institute of Technology, Bombay
These lecture notes attempt to give a rapid review of the rudiments of classical commutative algebra. Topics covered: rings and modules, Noetherian rings, integral extensions, Dedekind domains, and primary decomposition of modules.
(9894 views)
by Sudhir R. Ghorpade - Indian Institute of Technology, Bombay
These lecture notes attempt to give a rapid review of the rudiments of classical commutative algebra. Topics covered: rings and modules, Noetherian rings, integral extensions, Dedekind domains, and primary decomposition of modules.
(9894 views)
A Primer of Commutative Algebra
by J.S. Milne
These notes prove the basic theorems in commutative algebra required for algebraic geometry and algebraic groups. They assume only a knowledge of the algebra usually taught in advanced undergraduate or first-year graduate courses.
(10158 views)
by J.S. Milne
These notes prove the basic theorems in commutative algebra required for algebraic geometry and algebraic groups. They assume only a knowledge of the algebra usually taught in advanced undergraduate or first-year graduate courses.
(10158 views)
Commutative Algebra
by Jacob Lurie, Akhil Mathew - Harvard University
Topics: Unique factorization; Basic definitions; Rings of holomorphic functions; R-modules; Ideals; Localization; SpecR and Zariski topology; The ideal class group; Dedekind domains; Hom and the tensor product; Exactness; Projective modules; etc.
(11941 views)
by Jacob Lurie, Akhil Mathew - Harvard University
Topics: Unique factorization; Basic definitions; Rings of holomorphic functions; R-modules; Ideals; Localization; SpecR and Zariski topology; The ideal class group; Dedekind domains; Hom and the tensor product; Exactness; Projective modules; etc.
(11941 views)