Symplectic Geometry of Quantum Noise

Small book cover: Symplectic Geometry of Quantum Noise

Symplectic Geometry of Quantum Noise

Publisher: arXiv
Number of pages: 57

We discuss a quantum counterpart, in the sense of the Berezin-Toeplitz quantization, of certain constraints on Poisson brackets coming from 'hard' symplectic geometry. It turns out that they can be interpreted in terms of the quantum noise of observables and their joint measurements in operational quantum mechanics. Our findings include various geometric mechanisms of quantum noise production and a noise-localization uncertainty relation.

Home page url

Download or read it online for free here:
Download link
(470KB, PDF)

Similar books

Book cover: Symplectic, Poisson, and Noncommutative GeometrySymplectic, Poisson, and Noncommutative Geometry
by - Cambridge University Press
Symplectic geometry has its origin in physics, but has flourished as an independent subject in mathematics, together with its offspring, symplectic topology. Symplectic methods have even been applied back to mathematical physics ...
Book cover: Contact GeometryContact Geometry
by - arXiv
This is an introductory text on the more topological aspects of contact geometry. After discussing some of the fundamental results of contact topology, I move on to a detailed exposition of the original proof of the Lutz-Martinet theorem.
Book cover: Introduction to Symplectic and Hamiltonian GeometryIntroduction to Symplectic and Hamiltonian Geometry
The text covers foundations of symplectic geometry in a modern language. It describes symplectic manifolds and their transformations, and explains connections to topology and other geometries. It also covers hamiltonian fields and hamiltonian actions.
Book cover: Introduction to Symplectic Field TheoryIntroduction to Symplectic Field Theory
by - arXiv
We sketch in this article a new theory, which we call Symplectic Field Theory or SFT, which provides an approach to Gromov-Witten invariants of symplectic manifolds and their Lagrangian submanifolds in the spirit of topological field theory.