Logo

Symplectic Geometry of Quantum Noise

Small book cover: Symplectic Geometry of Quantum Noise

Symplectic Geometry of Quantum Noise
by

Publisher: arXiv
Number of pages: 57

Description:
We discuss a quantum counterpart, in the sense of the Berezin-Toeplitz quantization, of certain constraints on Poisson brackets coming from 'hard' symplectic geometry. It turns out that they can be interpreted in terms of the quantum noise of observables and their joint measurements in operational quantum mechanics. Our findings include various geometric mechanisms of quantum noise production and a noise-localization uncertainty relation.

Home page url

Download or read it online for free here:
Download link
(470KB, PDF)

Similar books

Book cover: Contact GeometryContact Geometry
by - arXiv
This is an introductory text on the more topological aspects of contact geometry. After discussing some of the fundamental results of contact topology, I move on to a detailed exposition of the original proof of the Lutz-Martinet theorem.
(10754 views)
Book cover: Lectures on Holomorphic Curves in Symplectic and Contact GeometryLectures on Holomorphic Curves in Symplectic and Contact Geometry
by - arXiv
This is a set of expository lecture notes created originally for a graduate course on holomorphic curves. From the table of contents: Introduction; Local properties; Fredholm theory; Moduli spaces; Bubbling and nonsqueezing.
(10677 views)
Book cover: Lecture Notes on Embedded Contact HomologyLecture Notes on Embedded Contact Homology
by - arXiv
These notes give an introduction to embedded contact homology (ECH) of contact three-manifolds, gathering many basic notions which are scattered across a number of papers. We also discuss the origins of ECH, including various remarks and examples.
(6862 views)
Book cover: Introduction to Symplectic and Hamiltonian GeometryIntroduction to Symplectic and Hamiltonian Geometry
by
The text covers foundations of symplectic geometry in a modern language. It describes symplectic manifolds and their transformations, and explains connections to topology and other geometries. It also covers hamiltonian fields and hamiltonian actions.
(13634 views)