Robust Optimization
by A. Ben-Tal, L. El Ghaoui, A. Nemirovski
Publisher: Princeton University Press 2009
ISBN/ASIN: B0087I5CBO
Number of pages: 570
Description:
Robust optimization is still a relatively new approach to optimization problems affected by uncertainty, but it has already proved so useful in real applications that it is difficult to tackle such problems today without considering this powerful methodology. Written by the principal developers of robust optimization, and describing the main achievements of a decade of research, this is the first book to provide a comprehensive and up-to-date account of the subject.
Download or read it online for free here:
Download link
(7.2MB, PDF)
Similar books

by K.J.H. Law, A.M. Stuart, K.C. Zygalakis - arXiv.org
This book provides a systematic treatment of the mathematical underpinnings of work in data assimilation. Authors develop a framework in which a Bayesian formulation of the problem provides the bedrock for the derivation and analysis of algorithms.
(7011 views)

by D. P. Williamson, D. B. Shmoys - Cambridge University Press
This book shows how to design approximation algorithms: efficient algorithms that find provably near-optimal solutions. It is organized around techniques for designing approximation algorithms, including greedy and local search algorithms.
(17423 views)

by Stephen Boyd, Lieven Vandenberghe - Cambridge University Press
A comprehensive introduction to the subject for students and practitioners in engineering, computer science, mathematics, statistics, finance, etc. The book shows in detail how optimization problems can be solved numerically with great efficiency.
(20370 views)

by Marius Durea, Radu Strugariu - De Gruyter Open
Starting with the case of differentiable data and the classical results on constrained optimization problems, continuing with the topic of nonsmooth objects involved in optimization, the book concentrates on both theoretical and practical aspects.
(8617 views)