Logo

Lectures on a Method in the Theory of Exponential Sums

Large book cover: Lectures on a Method in the Theory of Exponential Sums

Lectures on a Method in the Theory of Exponential Sums
by

Publisher: Tata Institute of Fundamental Research
ISBN/ASIN: 3540183663
ISBN-13: 9783540183662
Number of pages: 134

Description:
It was my first object to present a selfcontained introduction to summation and transformation formulae for exponential sums involving either the divisor function d(n) or the Fourier coefficients of a cusp form; these two cases are in fact closely analogous. Secondly, I wished to show how these formulae can be applied to the estimation of the exponential sums in question.

Download or read it online for free here:
Download link
(750KB, PDF)

Similar books

Book cover: Distribution of Prime NumbersDistribution of Prime Numbers
by - Macquarie University
These notes were used by the author at Imperial College, University of London. The contents: arithmetic functions, elementary prime number theory, Dirichlet series, primes in arithmetic progressions, prime number theorem, Riemann zeta function.
(10672 views)
Book cover: Lectures on The Riemann Zeta-FunctionLectures on The Riemann Zeta-Function
by - Tata Institute of Fundamental Research
These notes provide an intorduction to the theory of the Riemann Zeta-function for students who might later want to do research on the subject. The Prime Number Theorem, Hardy's theorem, and Hamburger's theorem are the principal results proved here.
(9494 views)
Book cover: Analytic Number Theory: A Tribute to Gauss and DirichletAnalytic Number Theory: A Tribute to Gauss and Dirichlet
by - American Mathematical Society
The volume begins with a definitive summary of the life and work of Dirichlet and continues with thirteen papers by leading experts on research topics of current interest in number theory that were directly influenced by Gauss and Dirichlet.
(9273 views)
Book cover: An Introduction to Modular FormsAn Introduction to Modular Forms
by - arXiv.org
Contents: Functional Equations; Elliptic Functions; Modular Forms and Functions; Hecke Operators: Ramanujan's discoveries; Euler Products, Functional Equations; Modular Forms on Subgroups of Gamma; More General Modular Forms; Some Pari/GP Commands.
(2090 views)