Logo

Physics, Topology, Logic and Computation: A Rosetta Stone

Small book cover: Physics, Topology, Logic and Computation: A Rosetta Stone

Physics, Topology, Logic and Computation: A Rosetta Stone
by

Publisher: arXiv
Number of pages: 73

Description:
With the rise of interest in quantum cryptography and quantum computation, it became clear that there is extensive network of analogies between physics, topology, logic and computation. In this expository paper, we make some of these analogies precise using the concept of 'closed symmetric monoidal category'. We assume no prior knowledge of category theory, proof theory or computer science.

Home page url

Download or read it online for free here:
Download link
(810KB, PDF)

Download mirrors:
Mirror 1

Similar books

Book cover: Topics in Spectral TheoryTopics in Spectral Theory
by - McGill University
The subject of these lecture notes is spectral theory of self-adjoint operators and some of its applications to mathematical physics. The main theme is the interplay between spectral theory of self-adjoint operators and classical harmonic analysis.
(7756 views)
Book cover: Lectures on the Singularities of the Three-Body ProblemLectures on the Singularities of the Three-Body Problem
by - Tata Institute of Fundamental Research
From the table of contents: The differential equations of mechanics; The three-body problem : simple collisions (The n-body problem); The three-body problem: general collision (Stability theory of solutions of differential equations).
(7899 views)
Book cover: Mirror SymmetryMirror Symmetry
by - American Mathematical Society
The book provides an introduction to the field of mirror symmetry from both a mathematical and physical perspective. After covering the relevant background material, the monograph is devoted to the proof of mirror symmetry from various viewpoints.
(11595 views)
Book cover: Random Matrix Models and Their ApplicationsRandom Matrix Models and Their Applications
by - Cambridge University Press
The book covers broad areas such as topologic and combinatorial aspects of random matrix theory; scaling limits, universalities and phase transitions in matrix models; universalities for random polynomials; and applications to integrable systems.
(14869 views)