**A Problem Course in Mathematical Logic**

by Stefan Bilaniuk

2003**Number of pages**: 166

**Description**:

A Problem Course in Mathematical Logic is intended to serve as the text for an introduction to mathematical logic for undergraduates with some mathematical sophistication. It supplies definitions, statements of results, and problems, along with some explanations, examples, and hints. The idea is for the students, individually or in groups, to learn the material by solving the problems and proving the results for themselves. The book should do as the text for a course taught using the modified Moore-method.

Download or read it online for free here:

**Download link**

(0.7MB, PDF)

## Similar books

**What is Mathematics: Gödel's Theorem and Around**

by

**Karlis Podnieks**-

**University of Latvia**

Textbook for students in mathematical logic and foundations of mathematics. Contents: Platonism, intuition and the nature of mathematics; Axiomatic Set Theory; First Order Arithmetic; Hilbert's Tenth Problem; Incompleteness Theorems; Godel's Theorem.

(

**8140**views)

**A Friendly Introduction to Mathematical Logic**

by

**Christopher C. Leary, Lars Kristiansen**-

**Milne Library Publishing**

In this book, readers with no previous study in the field are introduced to the basics of model theory, proof theory, and computability theory. The text is designed to be used either in an upper division undergraduate classroom, or for self study.

(

**9202**views)

**An Introduction to Mathematical Logic**

by

**Wolfram Pohlers, Thomas Glass**

This text treats pure logic and in this connection introduces to basic proof-theoretic techniques. Fundamentals of model theory and those of recursion theory are dealt with. Furthermore, some extensions of first order logic are treated.

(

**13283**views)

**Topics in Logic and Foundations**

by

**Stephen G. Simpson**-

**The Pennsylvania State University**

This is a set of lecture notes from a 15-week graduate course at the Pennsylvania State University. The course covered some topics which are important in contemporary mathematical logic and foundations but usually omitted from introductory courses.

(

**5656**views)