Logo

Understanding Quantum Measurement from the Solution of Dynamical Models

Small book cover: Understanding Quantum Measurement from the Solution of Dynamical Models

Understanding Quantum Measurement from the Solution of Dynamical Models
by

Publisher: arXiv
Number of pages: 187

Description:
The quantum measurement problem: why a unique outcome is obtained in each individual experiment, is currently tackled by solving models. After a general introduction, we review the many models proposed. Next, a flexible and realistic quantum model is introduced, describing the measurement of the z-component of a spin through interaction with a magnetic memory simulated by a Curie-Weiss magnet, including N >>1 spins coupled to a phonon bath.

Home page url

Download or read it online for free here:
Download link
(2.4MB, PDF)

Similar books

Book cover: Quantum NonlocalityQuantum Nonlocality
by - MDPI AG
This book presents the current views on the bizarre property of quantum theory: nonlocality. The contributions in the book describe the bizarre aspects of nonlocality -- a phenomenon which cannot be explained in the framework of classical physics.
(3559 views)
Book cover: Quantum MechanicsQuantum Mechanics
by - Imperial College
This text introduces quantum mechanics from a more abstract point of view than a first quantum mechanics course. Students will gain a deeper understanding of the structure of quantum mechanics and of some of its key points.
(15802 views)
Book cover: Perspectives in Quantum Physics: Epistemological, Ontological and PedagogicalPerspectives in Quantum Physics: Epistemological, Ontological and Pedagogical
by - arXiv
The author shows how a transformed modern physics curriculum may positively impact student perspectives on indeterminacy and wave-particle duality, by making questions of classical and quantum reality a central theme of his course.
(8998 views)
Book cover: Advanced Quantum MechanicsAdvanced Quantum Mechanics
by - arXiv
Lecture notes by Professor F. J. Dyson for a course in Relativistic Quantum Mechanics given at Cornell University in the Fall of 1951 for the students who had courses in classical mechanics, electrodynamics and non-relativistic quantum theory.
(7728 views)