Lie Systems: Theory, Generalisations, and Applications
by J.F. Carinena, J. de Lucas
Publisher: arXiv 2011
Number of pages: 163
Description:
Lie systems form a class of systems of first-order ordinary differential equations whose general solutions can be described in terms of certain finite families of particular solutions and a set of constants, by means of a particular type of mapping: the so-called superposition rule.
Download or read it online for free here:
Download link
(1.5MB, PDF)
Similar books

by Jean Claude Dutailly - arXiv
This is a comprehensive and precise coverage of the mathematical concepts and tools used in present theoretical physics: differential geometry, Lie groups, fiber bundles, Clifford algebra, differential operators, normed algebras, connections, etc.
(13155 views)

by David Ellwood, at al. - American Mathematical Society
Mathematical gauge theory studies connections on principal bundles. The book provides an introduction to current research, covering material from Heegaard Floer homology, contact geometry, smooth four-manifold topology, and symplectic four-manifolds.
(12238 views)

by Pieter Naaijkens - arXiv
These are the lecture notes for a one semester course at Leibniz University Hannover. The main aim of the course is to give an introduction to the mathematical methods used in describing discrete quantum systems consisting of infinitely many sites.
(6385 views)

by William W. Symes - Rice University
This course aims to make students aware of the physical origins of the main partial differential equations of classical mathematical physics, including the equations of fluid and solid mechanics, thermodynamics, and classical electrodynamics.
(14536 views)