**Lie Systems: Theory, Generalisations, and Applications**

by J.F. Carinena, J. de Lucas

**Publisher**: arXiv 2011**Number of pages**: 163

**Description**:

Lie systems form a class of systems of first-order ordinary differential equations whose general solutions can be described in terms of certain finite families of particular solutions and a set of constants, by means of a particular type of mapping: the so-called superposition rule.

Download or read it online for free here:

**Download link**

(1.5MB, PDF)

## Similar books

**Mathematics for Theoretical Physics**

by

**Jean Claude Dutailly**-

**arXiv**

This is a comprehensive and precise coverage of the mathematical concepts and tools used in present theoretical physics: differential geometry, Lie groups, fiber bundles, Clifford algebra, differential operators, normed algebras, connections, etc.

(

**13155**views)

**Floer Homology, Gauge Theory, and Low Dimensional Topology**

by

**David Ellwood, at al.**-

**American Mathematical Society**

Mathematical gauge theory studies connections on principal bundles. The book provides an introduction to current research, covering material from Heegaard Floer homology, contact geometry, smooth four-manifold topology, and symplectic four-manifolds.

(

**12238**views)

**Quantum Spin Systems on Infinite Lattices**

by

**Pieter Naaijkens**-

**arXiv**

These are the lecture notes for a one semester course at Leibniz University Hannover. The main aim of the course is to give an introduction to the mathematical methods used in describing discrete quantum systems consisting of infinitely many sites.

(

**6385**views)

**Partial Differential Equations of Mathematical Physics**

by

**William W. Symes**-

**Rice University**

This course aims to make students aware of the physical origins of the main partial differential equations of classical mathematical physics, including the equations of fluid and solid mechanics, thermodynamics, and classical electrodynamics.

(

**14536**views)