Logo

Simulations of Quantum Many Body Systems

Small book cover: Simulations of Quantum Many Body Systems

Simulations of Quantum Many Body Systems
by

Publisher: Louisiana State University

Description:
Contents: The Equilibrium Green Function Method; Dynamical Mean Field and Dynamical Cluster Approximation; Hirsh Fye and Continuous time Quantum Monte Carlo Methods; The Maximum Entropy Method for analytic continuation of QMC data; The non-equilibrium Green function method.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: A Primer on Quantum FluidsA Primer on Quantum Fluids
by - Springer
This book introduces the theoretical description of quantum fluids. The focus is on gaseous atomic Bose-Einstein condensates and, to a minor extent, superfluid helium, but the underlying concepts are relevant to other forms of quantum fluids.
(5267 views)
Book cover: Statistical Mechanics and the Physics of the Many-Particle Model SystemsStatistical Mechanics and the Physics of the Many-Particle Model Systems
by - arXiv
The development of methods of quantum statistical mechanics is considered in light of their applications to quantum solid-state theory. We discuss fundamental problems of the physics of magnetic materials and methods of quantum theory of magnetism.
(9686 views)
Book cover: The Universe in a Helium DropletThe Universe in a Helium Droplet
by - Oxford University Press
There are fundamental relations between two vast areas of physics: particle physics and cosmology (micro- and macro-worlds). The main goal of this book is to establish and define the connection of these two fields with condensed matter physics.
(17065 views)
Book cover: Many-body Physics with Ultracold GasesMany-body Physics with Ultracold Gases
by - arXiv.org
This paper reviews recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases. It focuses on effects beyond standard weak-coupling descriptions, such as the Mott-Hubbard transition in optical lattices, etc.
(4492 views)