**Step-by-Step BS to PhD Math/Physics**

by Alex Alaniz

**Publisher**: UC Riverside 2013**Number of pages**: 323

**Description**:

These are step-by-verifiable-step notes which are designed to help students with a year of calculus based physics who are about to enroll in ordinary differential equations go all the way to doctoral foundations in either mathematics and more so in physics with much reduced mystery. Abstract algebra, topology (local and global) folds into a useful, intuitive toolset for ordinary differential equations and partial differential equations, be they linear or nonlinear.

Download or read it online for free here:

**Download link**

(2.8MB, PDF)

## Similar books

**Introduction to Mathematical Physics**

by

**Alex Madon**-

**Wikibooks**

The goal of this book is to propose an ensemble view of modern physics. The coherence between various fields of physics is insured by following two axes: a first is the universal mathematical language; the second is the study of the N body problem.

(

**8522**views)

**Lectures on Three-Dimensional Elasticity**

by

**P. G. Ciarlet**-

**Tata Institute of Fundamental Research**

In this book a non-linear system of partial differential equations will be established as a mathematical model of elasticity. An energy functional will be established and existence results will be studied in the second chapter.

(

**8358**views)

**Lecture Notes on Mathematical Methods of Classical Physics**

by

**Vicente Cortes, Alexander S. Haupt**-

**arXiv**

Topics include Lagrangian Mechanics, Hamiltonian Mechanics, Hamilton-Jacobi Theory, Classical Field Theory formulated in the language of jet bundles, field theories such as sigma models, gauge theory, and Einstein's theory of general relativity.

(

**7937**views)

**Introduction to Spectral Theory of SchrÃ¶dinger Operators**

by

**A. Pankov**-

**Vinnitsa State Pedagogical University**

Contents: Operators in Hilbert spaces; Spectral theorem of self-adjoint operators; Compact operators and the Hilbert-Schmidt theorem; Perturbation of discrete spectrum; Variational principles; One-dimensional Schroedinger operator; etc.

(

**8052**views)