Step-by-Step BS to PhD Math/Physics

Small book cover: Step-by-Step BS to PhD Math/Physics

Step-by-Step BS to PhD Math/Physics

Publisher: UC Riverside
Number of pages: 323

These are step-by-verifiable-step notes which are designed to help students with a year of calculus based physics who are about to enroll in ordinary differential equations go all the way to doctoral foundations in either mathematics and more so in physics with much reduced mystery. Abstract algebra, topology (local and global) folds into a useful, intuitive toolset for ordinary differential equations and partial differential equations, be they linear or nonlinear.

Download or read it online for free here:
Download link
(2.8MB, PDF)

Similar books

Book cover: Mathematical Methods of PhysicsMathematical Methods of Physics
- Wikibooks
A book on common techniques of applied mathematics that are often used in theoretical physics. It may be accessible to anyone with beginning undergraduate training in mathematics and physics. It is useful for anyone wishing to study advanced Physics.
Book cover: Elements for Physics: Quantities, Qualities, and Intrinsic TheoriesElements for Physics: Quantities, Qualities, and Intrinsic Theories
by - Springer
Reviews Lie groups, differential geometry, and adapts the usual notion of linear tangent application to the intrinsic point of view proposed for physics. The theory of heat conduction and the theory of linear elastic media are studied in detail.
Book cover: Lecture Notes on Mathematical Methods of Classical PhysicsLecture Notes on Mathematical Methods of Classical Physics
by - arXiv
Topics include Lagrangian Mechanics, Hamiltonian Mechanics, Hamilton-Jacobi Theory, Classical Field Theory formulated in the language of jet bundles, field theories such as sigma models, gauge theory, and Einstein's theory of general relativity.
Book cover: Quantum Spin Systems on Infinite LatticesQuantum Spin Systems on Infinite Lattices
by - arXiv
These are the lecture notes for a one semester course at Leibniz University Hannover. The main aim of the course is to give an introduction to the mathematical methods used in describing discrete quantum systems consisting of infinitely many sites.