Logo

Step-by-Step BS to PhD Math/Physics

Small book cover: Step-by-Step BS to PhD Math/Physics

Step-by-Step BS to PhD Math/Physics
by

Publisher: UC Riverside
Number of pages: 323

Description:
These are step-by-verifiable-step notes which are designed to help students with a year of calculus based physics who are about to enroll in ordinary differential equations go all the way to doctoral foundations in either mathematics and more so in physics with much reduced mystery. Abstract algebra, topology (local and global) folds into a useful, intuitive toolset for ordinary differential equations and partial differential equations, be they linear or nonlinear.

Download or read it online for free here:
Download link
(2.8MB, PDF)

Similar books

Book cover: Introduction to Mathematical PhysicsIntroduction to Mathematical Physics
by - Wikibooks
The goal of this book is to propose an ensemble view of modern physics. The coherence between various fields of physics is insured by following two axes: a first is the universal mathematical language; the second is the study of the N body problem.
(8522 views)
Book cover: Lectures on Three-Dimensional ElasticityLectures on Three-Dimensional Elasticity
by - Tata Institute of Fundamental Research
In this book a non-linear system of partial differential equations will be established as a mathematical model of elasticity. An energy functional will be established and existence results will be studied in the second chapter.
(8358 views)
Book cover: Lecture Notes on Mathematical Methods of Classical PhysicsLecture Notes on Mathematical Methods of Classical Physics
by - arXiv
Topics include Lagrangian Mechanics, Hamiltonian Mechanics, Hamilton-Jacobi Theory, Classical Field Theory formulated in the language of jet bundles, field theories such as sigma models, gauge theory, and Einstein's theory of general relativity.
(7937 views)
Book cover: Introduction to Spectral Theory of Schrödinger OperatorsIntroduction to Spectral Theory of Schrödinger Operators
by - Vinnitsa State Pedagogical University
Contents: Operators in Hilbert spaces; Spectral theorem of self-adjoint operators; Compact operators and the Hilbert-Schmidt theorem; Perturbation of discrete spectrum; Variational principles; One-dimensional Schroedinger operator; etc.
(8052 views)