Categories and Homological Algebra
by Pierre Schapira
Publisher: UPMC 2011
Number of pages: 125
Description:
The aim of these notes is to introduce the reader to the language of categories and to present the basic notions of homological algebra, first from an elementary point of view, with the notion of derived functors, next with a more sophisticated approach, with the introduction of triangulated and derived categories.
Download or read it online for free here:
Download link
(630KB, PDF)
Similar books

by Jiri Adamek, Horst Herrlich, George Strecker - John Wiley & Sons
A modern introduction to the theory of structures via the language of category theory, the emphasis is on concrete categories. The first five chapters present the basic theory, while the last two contain more recent research results.
(17334 views)

by Brendan Fong, David I Spivak - arXiv.org
This book is an invitation to discover advanced topics in category theory through concrete, real-world examples. The tour takes place over seven sketches, such as databases, electric circuits, etc, with the exploration of a categorical structure.
(4706 views)

by Tom Leinster - arXiv
Higher-dimensional category theory is the study of n-categories, operads, braided monoidal categories, and other such exotic structures. It draws its inspiration from topology, quantum algebra, mathematical physics, logic, and computer science.
(11003 views)

by Marc Levine - American Mathematical Society
This book combines foundational constructions in the theory of motives and results relating motivic cohomology to more explicit constructions. Prerequisite for understanding the work is a basic background in algebraic geometry.
(13191 views)