A primer on information theory, with applications to neuroscience
by Felix Effenberger
Publisher: arXiv 2013
Number of pages: 58
Description:
This chapter is supposed to give a short introduction to the fundamentals of information theory; not only, but especially suited for people having a less firm background in mathematics and probability theory. Regarding applications, the focus will be on neuroscientific topics.
Download or read it online for free here:
Download link
(1MB, PDF)
Similar books
Information Theory, Inference, and Learning Algorithms
by David J. C. MacKay - Cambridge University Press
A textbook on information theory, Bayesian inference and learning algorithms, useful for undergraduates and postgraduates students, and as a reference for researchers. Essential reading for students of electrical engineering and computer science.
(29632 views)
by David J. C. MacKay - Cambridge University Press
A textbook on information theory, Bayesian inference and learning algorithms, useful for undergraduates and postgraduates students, and as a reference for researchers. Essential reading for students of electrical engineering and computer science.
(29632 views)
Lecture Notes on Network Information Theory
by Abbas El Gamal, Young-Han Kim - arXiv
Network information theory deals with the fundamental limits on information flow in networks and optimal coding and protocols. These notes provide a broad coverage of key results, techniques, and open problems in network information theory.
(14812 views)
by Abbas El Gamal, Young-Han Kim - arXiv
Network information theory deals with the fundamental limits on information flow in networks and optimal coding and protocols. These notes provide a broad coverage of key results, techniques, and open problems in network information theory.
(14812 views)
Around Kolmogorov Complexity: Basic Notions and Results
by Alexander Shen - arXiv.org
Algorithmic information theory studies description complexity and randomness. This text covers the basic notions of algorithmic information theory: Kolmogorov complexity, Solomonoff universal a priori probability, effective Hausdorff dimension, etc.
(6726 views)
by Alexander Shen - arXiv.org
Algorithmic information theory studies description complexity and randomness. This text covers the basic notions of algorithmic information theory: Kolmogorov complexity, Solomonoff universal a priori probability, effective Hausdorff dimension, etc.
(6726 views)
Logic and Information
by Keith Devlin - ESSLLI
An introductory, comparative account of three mathematical approaches to information: the classical quantitative theory of Claude Shannon, a qualitative theory developed by Fred Dretske, and a qualitative theory introduced by Barwise and Perry.
(12930 views)
by Keith Devlin - ESSLLI
An introductory, comparative account of three mathematical approaches to information: the classical quantitative theory of Claude Shannon, a qualitative theory developed by Fred Dretske, and a qualitative theory introduced by Barwise and Perry.
(12930 views)