**An Inquiry-Based Introduction to Proofs**

by Jim Hefferon

**Publisher**: Saint Michael's College 2013**Number of pages**: 23

**Description**:

Introduction to Proofs is a Free undergraduate text. It is inquiry-based, sometimes called the Moore method or the discovery method. The text consists of a sequence of exercises, statements for students to prove, along with a few definitions and remarks. The instructor does not lecture but instead lightly guides as the class works through the material together.

Download or read it online for free here:

**Download link**

(200KB, PDF)

## Similar books

**Proofs and Concepts: the fundamentals of abstract mathematics**

by

**Dave Witte Morris, Joy Morris**-

**University of Lethbridge**

This undergraduate textbook provides an introduction to proofs, logic, sets, functions, and other fundamental topics of abstract mathematics. It is designed to be the textbook for a bridge course that introduces undergraduates to abstract mathematics.

(

**16680**views)

**Book of Proof**

by

**Richard Hammack**-

**Virginia Commonwealth University**

This textbook is an introduction to the standard methods of proving mathematical theorems. It is written for an audience of mathematics majors at Virginia Commonwealth University, and is intended to prepare the students for more advanced courses.

(

**39943**views)

**Proof in Mathematics: An Introduction**

by

**James Franklin, Albert Daoud**-

**Kew Books**

This is a small (98 page) textbook designed to teach mathematics and computer science students the basics of how to read and construct proofs. The book takes a straightforward, no nonsense approach to explaining the core technique of mathematics.

(

**13886**views)

**Fundamental Concepts of Mathematics**

by

**Farshid Hajir**-

**University of Massachusetts**

Problem Solving, Inductive vs. Deductive Reasoning, An introduction to Proofs; Logic and Sets; Sets and Maps; Counting Principles and Finite Sets; Relations and Partitions; Induction; Number Theory; Counting and Uncountability; Complex Numbers.

(

**20085**views)