Logo

An Introduction to Tensors for Students of Physics and Engineering

Small book cover: An Introduction to Tensors for Students of Physics and Engineering

An Introduction to Tensors for Students of Physics and Engineering
by

Publisher: Glenn Research Center
Number of pages: 29

Description:
The book is intended to serve as a bridge from the point where most undergraduate students 'leave off' in their studies of mathematics to the place where most texts on tensor analysis begin. A basic knowledge of vectors, matrices, and physics is assumed. A semi-intuitive approach to those notions underlying tensor analysis is given via scalars, vectors, dyads, triads, and similar higher-order vector products.

Download or read it online for free here:
Download link
(330KB, PDF)

Similar books

Book cover: Functional and Structured Tensor Analysis for EngineersFunctional and Structured Tensor Analysis for Engineers
by - The University of Utah
A step-by-step introduction to tensor analysis that assumes you know nothing but basic calculus. Considerable emphasis is placed on a notation style that works well for applications in materials modeling, but other notation styles are also reviewed.
(20959 views)
Book cover: Introduction to Tensor CalculusIntroduction to Tensor Calculus
by - University of Heidelberg
This booklet contains an explanation about tensor calculus for students of physics and engineering with a basic knowledge of linear algebra. The focus lies on acquiring an understanding of the principles and ideas underlying the concept of 'tensor'.
(10229 views)
Book cover: Introduction to Tensor CalculusIntroduction to Tensor Calculus
by - arXiv
These are general notes on tensor calculus which can be used as a reference for an introductory course on tensor algebra and calculus. A basic knowledge of calculus and linear algebra with some commonly used mathematical terminology is presumed.
(9051 views)
Book cover: Tensor AnalysisTensor Analysis
by - Princeton Univ Pr
The lecture notes for the first part of a one-term course on differential geometry given at Princeton in the spring of 1967. They are an expository account of the formal algebraic aspects of tensor analysis using both modern and classical notations.
(21719 views)